Course guides
804325 - M3D-A - 3D Modeling

Unit in charge: Image Processing and Multimedia Technology Centre
Teaching unit: 804 - CITM - Image Processing and Multimedia Technology Centre.
Degree: BACHELOR’S DEGREE IN DESIGN, ANIMATION AND DIGITAL ART (Syllabus 2017). (Compulsory subject).
Academic year: 2021  ECTS Credits: 6.0  Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Casas Torres, Llogari

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEAAD 4. Have a command of the basics of lighting, photography and digital treatment to design and carry out artistic, audiovisual and animation products.
CEAAD 3. Master the wide range of professional tools in the sector for developing all kinds of digital content.
CEAAD 6. Design, model, texturise and animate 2D and 3D objects, characters and scenes for inclusion in digital projects, audiovisual sequences and video games.

Transversal:
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
06 URI. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.

TEACHING METHODOLOGY

The subject is eminently practical. As a consequence, the proposed methodology, with the exception of the first class, which will be purely introductory, will have the following structure:
The initial twenty minutes will be used for the clarification and resolution of doubts regarding the exercise proposed in the previous class.
The following eighty minutes will proceed to a masterful explanation of the new topic and / or procedure to work on.
The last twenty minutes will be used for the presentation and proposal of the next exercise to be carried out, which will be directly linked to the previous master class.
LEARNING OBJECTIVES OF THE SUBJECT

- Understand the concepts of three-dimensional modeling and their relationship with the different areas of design and artistic disciplines.
- Know the most used professional 3d design tools at a professional level.
- Learn to identify good practices when working.
- Know the specific techniques of creating digital volumes.
- Learn the basics of modeling, texturing and 3d lighting.
- Introduce work with digital sculpture.
- Use the content of the subject to create professional quality models.
- Adapt the application of 2D design and illustration concepts in the creation of textures for 3d models.
- Apply textures on a three-dimensional model following the most common techniques.
- Carry out the exercises proposed in the subject applying a correct structure, presentation and time planning, accompanied by a good orthographic and grammatical level.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
<tr>
<td>Hours large group</td>
<td>24,0</td>
<td>16.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>14,0</td>
<td>9.33</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

**Introduction**

**Description:**
- Basic concepts of three-dimensional space
- Coordinate systems
- Program interface
- Customization and menus
- Navigation.
- Modeling process: creation and manipulation of objects.
- Finishing and output processes: materials, lights, cameras and renderings

**Specific objectives:**
- Know the basic concepts of any three-dimensional space.
- Know the interface of the 3Ds MAX program

**Related activities:**
- Non-evaluable activity: independently investigate the operation of the program

**Full-or-part-time:** 4h
- Theory classes: 2h
- Self study: 2h
Poly modelling

Description:
Polygonal modeling tools
Subobjects
Selection tools
Loops and rings
Copy / Instance / Reference
Creating simple objects from primitives
Polycount
History
Work organization techniques
Template generation
Complex shapes from 2D shapes
Parametric modifiers
Advanced polygonal modeling tools
Free modifiers
Work at Lowpoly
Compound objects
Modeled from composite objects

Specific objectives:
Demonstrate knowledge and know how to apply concepts related to flat and three-dimensional representation and the control of the visualization of objects and scenes, using computer programs for graphic representation.

Related activities:
Design and creation of usual objects from 2D shapes
Design and creation of industrial and furniture elements created from primitives

Full-or-part-time: 30h
Theory classes: 6h
Guided activities: 6h
Self study: 18h
Character modelling

**Description:**
Character modeling

**References**
Most common errors: T-shapes, non mainfold geometry, nGons.
Modeling with simple primitives
Modeling of a bust
Hair modeling, Hi poly and Low poly techniques
Modeling based on subdivision surfaces
Poly to poly modeling
Anatomy of a figurative human body
body, limbs and hands
Modeling of a mimetic human body
3dsMAX digital sculpture tools
Modeling paradigm shift
Other digital sculpture programs and / or tools: Maya, Mudbox and zBrush
Preparation of geometry
Molding brushes
HiPoly vs LowPoly
Polygonal reduction
Processes and tools of retopology
Reduction levels.
Retopology has since 3dsMAX.
Other retopology programs.
Normal maps: extraction and application
Displacement maps

**Specific objectives:**
Know the basic concepts of geometry to generate bodies and surfaces, and know how to apply them in the modeling of 3D objects and scenes

**Related activities:**
Modeling of simple shapes: fruits, simple insects, claws
Modeling a doll or any trinket
Modeling a head
Modeling a mimetic human body.

**Full-or-part-time:** 56h
Theory classes: 6h
Guided activities: 6h
Self study : 44h
Materials

Description:
The materials editor
Shading trees
Differences between maps and textures
Procedural textures
Multimaterials

Specific objectives:
Know how to use different three-dimensional modeling and texturing techniques, taking into account the characteristics or type of application for which the 3D model is being generated.

Related activities:
Textured from a polygonal exercise done above.

Full-or-part-time: 8h
Theory classes: 2h
Guided activities: 2h
Self study: 4h

UV unwrapping

Description:
UV theory
Advanced unwrap
Deployed UVs
UV packaging
UV sets.
Unfold and relax
Exporting UVs to Photoshop
Painted textures in Photoshop
Occlusion maps

Specific objectives:
Know how to use different three-dimensional modeling and texturing techniques, taking into account the characteristics or type of application for which the 3D model is being generated.

Related activities:
Mapping of a previous organic modeling exercise

Full-or-part-time: 14h
Theory classes: 2h
Guided activities: 2h
Self study: 10h
**Lighting**

**Description:**
Types of lights  
Basic lighting models Outdoor lighting  
Generation and typology of shadows

**Specific objectives:**
Know how to use different lighting techniques, taking into account the characteristics or type of application for which the 3D model is being generated.

**Related activities:**
Creation and subsequent lighting of a composition from the elements previously mapped.

**Full-or-part-time:** 10h  
Theory classes: 2h  
Guided activities: 2h  
Self study: 6h

---

**Scene visualization**

**Description:**
Camera types and settings  
Differences from real cameras  
Render engines: common and uncommon parameters  
Adding effects  
Render reflections and refractions  
Render by channels  
Output formats: sequence of still images and / or video

**Specific objectives:**
Know how to plan the most appropriate workflow in the different rendering phases, as well as know the most appropriate rendering parameters for a given 3D design.

**Related activities:**
Addition of at least two cameras with different views and also different settings from the previous scene. Obtaining three renderings of different qualities with an explanation of how they were obtained.

**Full-or-part-time:** 14h  
Theory classes: 2h  
Guided activities: 2h  
Self study: 10h

---

**ACTIVITIES**

**Partial exam**

**Description:**
Score exam 15%  
Modeling an industrial element according to different techniques. From primitive forms and from two-dimensional forms.

**Full-or-part-time:** 4h  
Self study: 4h
Final exam

Description:
Exam score 20%
Part A: Modeling in an organic body from a model.
Part B: Test

Full-or-part-time: 4h
Self study: 4h

GRADING SYSTEM

Practices:
The three polygonal modeling practices: 25% of the final grade.
The two organic modeling practices: 30% of the final grade.
Student attitude, participation and correct delivery of all the courses practice: 10% of the final grade.
Partial exam: 15% of the final grade.
Final exam: 20% weight on the final grade.
Students who do not pass the subject through continuous assessment may take the reevaluation exam, as long as they do not have an NP grade.
The grade obtained in this reevaluation exam may in no case be higher than a 5, a fair pass.

EXAMINATION RULES.

The practices will be carried out individually.
In a generic way, they will always use the first thirty minutes of each class to solve any doubts that may exist in the exercises.
All the practices will be delivered in the corresponding folder of the campus in the established term. Failure to deliver a practice or part of it will mean the loss of its value in the final grade.

BIBLIOGRAPHY

Basic:

Complementary:
- Lurino, Luciano. 3D Environment Lighting. 3dTotal.com,
- 3DTotal Ltd.. Modeling Human Anatomy. 3dTotal.com,

RESOURCES

Hyperlink:
- www.cgchannel.com. Comunidad de artistas digitales. Cuenta con debates acerca de programas así como con la posibilidad de acceder a diversos recursos, tutoriales y workshops online.
- www.foro3d.com. Foro de resolución de dudas y debate de 3dpoder.com