820003 - EG - Graphic Expression

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 717 - EGE - Department of Engineering Presentation
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: MIGUEL ANGEL BRIGOS HERMIDA

Degree competences to which the subject contributes

Specific:
1. Understand spatial vision and graphic representation techniques, whether using traditional metric and descriptive geometry methods or computer assisted design applications.

Transversal:
4. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.

Teaching methodology

The course uses the methodology exhibition by 20%, individual work by 40%, work in groups by 20% and project-based learning by 20%.

Learning objectives of the subject

Enhance the spatial conception. Extend knowledge of the forms. To introduce and practice the rules of graphing techniques most commonly used in engineering.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 0h 0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 45h 30.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 15h 10.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>
Content

| Theory, basic technical drawing Regulations for industrial engineering. | Learning time: 31h 30m
Practical classes: 10h 30m
Self study : 21h |
|---|---|
| **Description:**
Representation systems.
Formats, Views and Lines.
Dimensioning of engineering drawings.
Cuts and sections.
Threaded elements.
Taper, surface finish.
Dimensional and Geometric Tolerances.
Standard elements | |

| Theory, Geometry in space, Analysis and Synthesis. | Learning time: 9h
Practical classes: 3h
Self study : 6h |
|---|---|
| **Description:**
Points, lines and planes.
Metrics and Synthesis. | |

| Theory, Surfaces. | Learning time: 4h 30m
Practical classes: 1h 30m
Self study : 3h |
|---|---|
| **Description:**
And generating guidelines.
Classification of areas and examples.
Intersections of surfaces. | |

| Sketch practices freehand. | Learning time: 12h
Practical classes: 4h 30m
Self study : 7h 30m |
|---|---|
| **Description:**
Interpretation of isometric projection
Representation in dihedral projection
Application of standards of technical drawing
Evaluation of the work | |
Continuous evaluation of student work.

It evaluates the study and independent work of student, both classroom-training and self-training, applied to all training activities.

- **Individual evaluation for each session of autonomous learning of theoretical concepts.** 25%
- **Individual evaluation of skills acquired in practical cases.** 60%
- **Evaluation Project Group.** 15%

The weight in the final of generic skills is 5%.

This subject has no re-evaluation.

Qualification system

- **Learning time:** 7h 30m
 - **Self study:** 7h 30m

CAD practices, step by step tutorials drawing tool.

Description:
- Experimenting with modeling techniques in 3D of parts and assemblies
- Experimenting with techniques of representation in 2D of parts and assemblies

- **Learning time:** 40h 30m
 - **Practical classes:** 25h 30m
 - **Self study:** 15h

CAD practices, approach and resolution of tutored exercises.

Description:
- 3D representation of parts bounded dihedral.
- 3D representation of parts in axonometric limited.
- Making plans dimensional axonometric drawings drawing.
- Creating volumetric parts of designing with surfaces.
- Apply the concepts of cut and bound in a piece drawn by CAD.
- Get the plane making a piece cut views for correct representation required by CAD.
- Making overall plans, exploded views and animations.

- **Learning time:** 45h
 - **Guided activities:** 15h
 - **Self study:** 30h

Making a group project.

Description:
- Idea and approach.
- Planning
- Sketch and calculations
- Making parts and plans
- Integration and assembly drawings
- Animation and presentation.
Regulations for carrying out activities

It is mandatory to carry out the project of a mechanism or structure, with memory, assembly drawing and parts.

Bibliography

Basic:

Complementary:
