820004 - F1FM - Physics I: Fundamentals of Mechanics

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2017

Degree: BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: MURIEL BOTEY CUMELLA - GLÒRIA SALA
Others: MARTA ALARCÓN - OLGA ALCARAZ - MURIEL BOTEY - GERMINAL CAMPS - ARJUNA CASTRILLÓN
- MARIA DEL BARRIO - DOMINGO GARCÍA - JORDI JOSÉ - POLO LLOVERAS - JOSEP LÓPEZ -
ROBERTO MACOVEZ - LUIS CARLOS PARDO - CRISTINA PERIAGO - ÂNGELS RIERA - MICHELA
ROMANINI - MARIA DOLORES RUIZ - GLÒRIA SALA
Bruna Escuer, Pere
Pineda Soler, Eloy

Degree competences to which the subject contributes

Specific:
1. Understand the general laws of mechanics, thermodynamics, fields and waves, and electromagnetism and apply them to engineering problems.

Transversal:
2. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology

Teaching methodology used: exposition 30%, individual work 60%, group work 8%, guided activities 2%.

Learning objectives of the subject

Training the student through the acquisition of a working method and providing some knowledge of the principles and basic concepts of Mechanics, so that he/she can apply them to solve problems in the engineering field.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h 30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h 10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h 60.00%</td>
</tr>
</tbody>
</table>
Subject 1: Introduction

Learning time: 11h
Theory classes: 0h
Laboratory classes: 4h
Self study: 7h

Description:

Related activities:
Laboratory sessions:
Errors (both terms)
Simple pendulum (fall term)
Dynamic spring (spring term)

Specific objectives:
Knowing the meaning of the dimensions of a physical magnitude. Knowing the uncertainty associated with experimental measurements and knowing how to calculate the propagation of uncertainty. Learning how to draw graphical representations of experimental data and how to make linear regressions.

Subject 2: Particle kinematics

Learning time: 17h
Theory classes: 7h
Self study: 10h

Description:

Specific objectives:
Modeling the motion for a particle, determining the equations of motion from its acceleration and initial conditions. Characterizing the linear and circular motion. Establishing the concept of frame of reference to understand the relative character of the movement.

Subject 3: Particle dynamics

Learning time: 20h
Theory classes: 8h
Self study: 12h

Description:

Specific objectives:
Understanding the concepts of force and mass and knowing Newton's laws of motion. Acquiring the ability to apply the Newton's laws to solve problems that include various particles. Knowing the differences between inertial and non-inertial frames of reference.
Subject 4: Work, energy and power

Learning time: 19h
Theory classes: 6h
Laboratory classes: 1h
Self study: 12h

Description:

Related activities:
Laboratory session:
Pulleys (fall term)

Specific objectives:
Understanding the physical concepts of work, power and energy. Identifying conservative forces and obtaining the corresponding potential energy associated with them. Problem-solving applying the work-kinetic energy theorem work and work-energy theorem. Knowing how to apply the law of conservation of mechanical energy.

Subject 5: Dynamics of systems of particles

Learning time: 20h
Theory classes: 7h
Laboratory classes: 1h
Self study: 12h

Description:

Related activities:
Laboratory session:
Collisions (spring term)

Specific objectives:
Describing the movement of the center of masses of systems of particles. Knowing to formulate and to apply the principles of conservation of the amount of movement and of the mechanical energy of systems of particles. Applying the theorems of conservation in the study of collisions and explosions.
Subject 6: Planar rigid bodies

Learning time: 40h
Theory classes: 12h
Laboratory classes: 4h
Self study: 24h

Description:

Related activities:
Laboratory sessions:
Rotation (fall term)
Equilibrium forces (spring and fall terms)
Ballistic pendulum (spring term)

Specific objectives:
Knowing how to establish the conditions for the static equilibrium of a rigid body and solving problems of equilibrium of the rigid body. Knowing the Newton’s second law for rotation and its application to solve problems. Knowing how to characterize the planar motion: coplanar translation and rotation about a fixed axis. Knowing the dynamics of the flat movement and knowing how to apply it to solve problems. Knowing and applying the angular momentum conservation in problem-solving.

Subject 7: Oscillations and waves

Learning time: 14h
Theory classes: 4h
Laboratory classes: 2h
Self study: 8h

Description:

Related activities:
Laboratory sessions:
Standing waves on strings (spring term)
Sound waves (fall term)

Specific objectives:
Knowing the crucial role of the simple harmonic motion since for its wide application in the study of diverse physical phenomena. Identifying the condition for simple harmonic motion in terms of acceleration. Understanding the wave concepts of propagation of energy and momentum. Knowing how to describe harmonic waves. Understanding interference phenomena, in particular, standing waves.
Qualification system

MARK M1:
- Laboratory: 20%
- Test 1: 15%
- Test 2: 25%
- Test 3: 20%
- Problems: 20%

MARK M2:
- Laboratory: 20%
- Test 3: 40%
- Problems: 40%

FINAL GRADE = maximum (M1 ; M2)

Regulations for carrying out activities

In all exams, students can use a pocket calculator. Besides, a physics formula sheet will be provided in the Problems' exam.

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

Curso Interactivo de Física en Internet
http://www.sc.ehu.es/sbweb/fisica/default.htm

La baldufa: un entorn per a l’aprenentatge de la física.
http://baldufa.upc.edu/