820005 - F2FE - Physics II: Fundamentals of Electromagnetism

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2019

Degree: BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6

Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: CRISTINA PERIAGO, DOMINGO GARCÍA
Others: LLUÍS AMETLLER, MARÍA DEL BARRIO, GERMINAL CAMPS, ANTONI FERNÁNDEZ, DOMINGO GARCÍA, POL LLOVERAS, CRISTINA PERIAGO, JOSEP LLUÍS TAMARIT, TRIFON TRIFONOV

Prior skills
No prerequisites

Requirements
No requirements

Degree competences to which the subject contributes

Specific:
2. Understand the general laws of mechanics, thermodynamics, fields and waves, and electromagnetism and apply them to engineering problems.

Transversal:
1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology
Teaching methodology: exposition 30%, individual work 60%, group work 8% and guided activities 2%.

Learning objectives of the subject
The main objective is training students through the acquisition of a working method and providing knowledge of the principles and basic concepts of electromagnetism, so that can be applied to solving problems in the field of engineering.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45h</td>
<td>0h</td>
<td>15h</td>
<td>0h</td>
<td>90h</td>
<td>150h</td>
</tr>
<tr>
<td></td>
<td>30.00%</td>
<td>0.00%</td>
<td>10.00%</td>
<td>0.00%</td>
<td>60.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Item 1. Electric field and Potential</th>
<th>Learning time: 32h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study : 19h 30m</td>
</tr>
</tbody>
</table>

Specific objectives:
- Understand the concept of electric field and its vector nature.
- Calculate the field created by a charge distribution.
- Interpret the concept of potential, potential difference and electrostatic potential energy of a charge distribution.

<table>
<thead>
<tr>
<th>Item 2. Conductors and dielectrics.</th>
<th>Learning time: 26h 15m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 30m</td>
</tr>
<tr>
<td></td>
<td>Self study : 15h 45m</td>
</tr>
</tbody>
</table>

Related activities:
- Lab:
 - Capacitors.

Specific objectives:
- Knowing the characteristics of a conductor in electrostatic equilibrium. Calculate the capacity of a capacitor of simple geometry and calculate the capacitor equivalent to an association of capacitors.
- Understand the concept of electrostatic field energy. Characterize the response of a dielectric in an electric field.
Item 3. DC and AC

<table>
<thead>
<tr>
<th>Learning time: 28h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Practical classes: 6h</td>
</tr>
<tr>
<td>Guided activities: 0h 30m</td>
</tr>
<tr>
<td>Self study : 17h 15m</td>
</tr>
</tbody>
</table>

Description:

Related activities:
Lab:
- Electromotive force and internal resistance of a battery
- DC Circuits. Kirchhoff rules
- Capacitors.
- AC Circuits. RLC serie. Reactances.
- AC Circuits. RLC serie. Resonance.

Specific objectives:
Knowing how to establish relationships of macroscopic Ohm's law. Understand energy relationships in electrical circuits. Applying Kirchhoff's laws to solve circuits. Understand the process of charging and discharging a capacitor in an RC circuit. Working with alternating magnitudes. Determine the reactance and impedance in an RLC circuit. Identify and characterize the phenomenon of resonance. Knowing energy features of the AC.
Item 4. Magnetic field

Learning time: 31h 15m
Theory classes: 10h
Laboratory classes: 2h
Guided activities: 0h 30m
Self study: 18h 45m

Description:

Related activities:
Lab:
- Magnetic field in the center of a solenoid. Determination of the mutual inductance between two solenoids

Specific objectives:
Identify the electrical current as a source of magnetic field. Being able to calculate the force acting on a charge or a straight thread in the presence of a magnetic field. Calculate the magnetic dipole moment of a loop and identify the characteristics of motion of a loop under the action of a magnetic field. Calculate the magnetic field created by a distribution of currents using the Biot and Savart's law. Knowing Ampere's law and its applications.

Item 5. Electromagnetic induction

Learning time: 26h 15m
Theory classes: 8h
Laboratory classes: 2h
Guided activities: 0h 30m
Self study: 15h 45m

Description:

Related activities:
Lab:
- Coils. RL circuit in non-stationary dynamics.
- Magnetic field created by a set of coils. Determination of mutual inductance between two coils.
- Electromagnetic induction. Determination of mutual inductance between two coils.

Specific objectives:
Be able to relate the temporal variation of the flow of magnetic field with induction. To apply the Faraday-Lenz's law to calculate the electromotive force induced in different practical cases. Describe the inductive phenomena that appear in electric circuits. RL circuit.
Item 6. Maxwell equations

<table>
<thead>
<tr>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Self study: 3h</td>
</tr>
</tbody>
</table>

Description:

Specific objectives:
Explain the appearance of the displacement current in free space. Write Maxwell equations. Recognize the electromagnetic field in non-stationary situations.

Qualification system

MARK M1:
- Lab: 20%
- Test 1: 15%
- Test 2: 25%
- Test 3: 20%
- Problems: 20%

MARK M2:
- Lab: 20%
- Test 3: 40%
- Problems: 40%

FINAL GRADE = maximum (M1;M2)

Regulations for carrying out activities

In all exams, students can use a pocket calculator and bring a printed copy of the physics formula sheet provided in Atenea.

The final exam of Physics 2 consists of Test 3 and Problems.

No re-evaluation exam has been considered in the grading policy of Physics 2.

Bibliography

Basic: