Degree competences to which the subject contributes

Specific:
1. Solve mathematical problems that may arise in engineering. Apply knowledge of linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial differential equations; numerical methods; numerical algorithms; statistics and optimisation.
820008 - ACM - Algebra and Multivariable Calculus

Transversal:

3. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.

Teaching methodology

Teaching methodology is a combination of lectures in the classroom and homeworks, along with a midterm and a final exam.

Learning objectives of the subject

To present the fundamental concepts of differential and integral calculus of several variables, and linear algebra. To develop the ability to applying them to engineering problems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 60h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
<tr>
<td>Content</td>
<td>Learning time: 40h</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td></td>
</tr>
</tbody>
</table>
| (ENG) Linear algebra and geometry | Theory classes: 16h
Self study : 24h |
| **Specific objectives:** | Identify and characterize vector spaces and subspaces, and manipulate vectors. Identify diagonalizable endomorphisms. |

<table>
<thead>
<tr>
<th>(ENG) Functions of several variables</th>
<th>Learning time: 30h</th>
</tr>
</thead>
</table>
| | Theory classes: 12h
Self study : 18h |
| **Specific objectives:** | Study of functions of several variables with emphasis on the concepts and methods of differential calculus of several variables. |

<table>
<thead>
<tr>
<th>(ENG) -Extrema of real functions of several variable</th>
<th>Learning time: 15h</th>
</tr>
</thead>
</table>
| | Theory classes: 6h
Self study : 9h |
| **Description:** | Local and global extrema. Test for local extrema. Constrained extrema. Lagrange multiplier method. |
| **Specific objectives:** | To acquire the basic tools for analyzing extrema problems, both free and constrained extrema problems. |
The grading will be carried out by means of the assessment by the teacher. The students should pass the subject with the continuous assessment based on the controls and the realization of exercises that will be common for all students.

Examens:
- Exam 1 (20%) (Test plus a problem)
- Exam 2 (20%) (Exam by pairs. The use of a calculator/computer/tablet...is allowed)
- Exam 3 (20%) (Test plus a problem)
- Exam 4 (40%) (Test plus two problems)

The subject DOES NOT HAVE a resit test.

Qualification system

The grading will be carried out by means of the assessment by the teacher. The students should pass the subject with the continuous assessment based on the controls and the realization of exercises that will be common for all students.

Examens:
- Exam 1 (20%) (Test plus a problem)
- Exam 2 (20%) (Exam by pairs. The use of a calculator/computer/tablet...is allowed)
- Exam 3 (20%) (Test plus a problem)
- Exam 4 (40%) (Test plus two problems)

The subject DOES NOT HAVE a resit test.

Regulations for carrying out activities

During the exams, the use of calculators, mobiles, PC's or tablets is not allowed, except for Exam 2. Students will be provided with a form that will be the only material that can be used during exams.
Bibliography

Basic:

Complementary:

