Course guides
820012 - CIA - Industrial Control and Automation

Unit in charge: Barcelona East School of Engineering
Teaching unit: 707 - ESAI - Department of Automatic Control.

Degree:
BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: JOAN DOMINGO PEÑA

Others: JOAQUIN BLESA IZQUIERDO
FRANCESC MELIÀ
JOAN OLLÉS
JOSEP MARIA RIBAS
ALEJANDRO ROLÁN
JOAN SEGURA CASANOVAS
JORDI SOLA SOLER
JOAN VALLVÉ

PRIOR SKILLS

For good follow the subject, is recommended to have passed the following subjects:
- Mathematics (I and II)
- Physics
- Electrical Systems
- Mechanical systems
- Graphic expression
- Computer Basics

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEI-12. Understand the fundamentals of automatic control methods.

Transversal:
1. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.
TEACHING METHODOLOGY

The course uses approximately methodology expositive/participative by 25%, the 50% is individual work, and group work by 25%. We also used the techniques of cooperative learning and project/problem-based learning. The practical realization is important to better understand the concepts worked.

LEARNING OBJECTIVES OF THE SUBJECT

1. Acquire basic skills in design, analysis and implementation of automated systems.
2. Knowing different devices, components and systems involved in the process automation industry.
4. Know the basics of continuous systems dynamics.
5. Know methods of regulation and control of continuous systems.
6. Teamwork.
7. Efficient use of information resources in the field of automation of industrial processes.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>30.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

- Unit 1_1

Description:

Specific objectives:
Upon completion of the activities students will be able to:
- Be able to explain the scope and content of the subject and details relating to staff, dedication weekly regimen of practices, assessment system and bibliography.
- Make a definition of Control Law using quality criteria.
- Differentiate the control to open loop and closed loop.
- Be aware of the scope and usefulness of industrial automation and its consequences.
- Be able to differentiate single-phase and tri-phase systems and use and explain protections of electrical installations.

Related activities:
Read complete guide (without annexes)
Reading the information in Annex 1
Reflection synthesis
Reading the text of Annex 2
Assignment 1: Self evaluation
Assignment 2: Write a definition of control law
Reading the text of Annex 3
Assignment 3: Make a list of advantages and disadvantages of industrial control and self-matització
Fill the template of time spent
Send files to Virtual Campus
Lab practices
Classroom problems/exercicies
Homework problems/exercicies

Full-or-part-time: 9h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study: 5h
- Unit 1.2

Description:
Sensors; classification, characteristics, and connection type.

Specific objectives:
Upon completion of the activities the student will be able to:
- Differentiate sensor transducer.
- Learn the most common sensors and ways of wiring.

Related activities:
Reading the text of Annex 1
Reflection synthesis
Assignment 1: Finding information
Assignment 2: Finding information
Assignment 3: Finding information
Assignment 4: Work on sensors and actuators
Fill in file time
Shipping to Virtual Campus
Practice lab
Problem/exercises sessions
Homework problem/exercises

Full-or-part-time: 9h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study: 5h

- Unit 1.3

Description:

Specific objectives:
Upon completion of the activities the student will be able to:
- Being able to explain what a GRAFCET.
- Know the most common structures GRAFCET.

Related activities:
Reading the text of Annex 1
Reflection synthesis
Assignment 1: Finding information
Assignment 2: solving exercise
Fill in file time
Shipping to Virtual Campus
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 9h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study: 5h
- **Unit 1_4**

Description:

Specific objectives:
At the end of the activities the student will be able to:
- Differentiate the different types of actuators.
- The autoenclavaments relays as memory circuits.
- Be able to make schematic connection of actuators and pre-actuators.

Related activities:
Access to information
Reading the text of Annex 1
Reflection synthesis
Assignment 1: resolution of exercise
Fill in file time
Shipping to Virtual Campus
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 10h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study: 6h

- **Unit 2_1**

Description:
Introduction to PLC.

Specific objectives:
Upon completion of the activities the student will be able to:
- Understand PLC types.
- Write a PLC program.
- Identify the elements of the programming language of PLCs.
- Learn what are the languages of IEC 61131.

Related activities:
Access to information
Reading the text of Annex 1 and web
Reflection synthesis
Assignment 1: resolution of issues
Fill in file time
Shipping to Virtual Campus
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 12h
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 6h
Self study: 2h
Unit 2_2

Description:

Specific objectives:
Upon completion of the activities the student will be able to:
- Explain what is a Programmable Logic Controller (PLC) and its use in automation systems.
- Understand the internal architecture of a PLC.
- Explain characteristics of this technology in relation to technology
- Be able to write simple PLC programs wired.
- Explain what is a PLC scan cycle.
- Explain how is structured the PLC memory and his addressing systems.

Related activities:
Reading Annex 1
Assignment 1: Questionnaire
Reading Annex 2
Assignment 2: Questionnaire
Reading Annex 3
Assignment 3: Exercise
Shipping to Virtual Campus
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 9h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study : 5h
- Unit 2_3

Description:
PLC Programming: combinational elements and sequences with scales, timers, counters and others. Analog part of PLC and connection to and from analog components. Control of induction motors with inverters; connection and programatic. Examples.

Specific objectives:
Upon completion of the activities the student will be able to:
- Programming a PLC using ladder diagrams.
- Use the resources of programming a PLC.
- Explain how the map is distributed memory of the PLC.
- Connect sensors and actuators, digital and analog, to PLC.
- Use timers and counters a PLC.
- Know, connect and program inverters for control of induction motors.

Related activities:
Reading the text of Annex 1
Reflection synthesis
Assignment 1: resolution of issues
Fill in file time
Shipping to Virtual Campus
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 10h 30m
Theory classes: 3h
Laboratory classes: 1h
Guided activities: 0h 30m
Self study : 6h
Unit 3.1

Description:

Specific objectives:
At the end of the activities the student will be able to:
- Differentiate automation and control
- Be able to explain what they are and how they respond systems order 0, 1 and 2
- Recognize whether a system is stable or not
- Identify the behavior of a system and the type of response from the canonical functions
- Establish the equivalent mathematical model of simple physical system

Related activities:
Reading the text of Annex 1
Reflection synthesis
Assignment 1: resolution of issues
Reading the text of Annex 2
Fill in file time
Shipping to Virtual Campus
Reading the example of Annex 3
Practice lab
Problem sessions
Homework problems

Full-or-part-time: 20h
Theory classes: 5h
Laboratory classes: 2h
Guided activities: 1h
Self study: 12h
- **Unit 3.2**

Description:

Specific objectives:
Upon completion of the activities the student will be able to:
- Make "s" transfer functions from differential equations.
- Build and simplify block diagrams.
- Use a simulator as help of characterization of systems
- To determine the stability of a system in open and closed loop
- Compensate poles and zeros.
- Use root locus and Nyquist graphics.

Related activities:
- Training groups
- Identification systems, simulators, classroom
- Solving exercises related to transfer functions and block diagrams
- Solving exercises related to stability
- Applying the Routh criteria
- Using graphics of roots locus and Nyquist

Full-or-part-time: 21h 30m
- Theory classes: 6h
- Laboratory classes: 2h
- Guided activities: 1h 30m
- Self study: 12h

- **Units 3.3 & 3.4**

Description:

Specific objectives:
At the end of the activities the student will be able to:
- Recognize the effect of P, I and D actions and their combined
- Tune regulator
- Discussion of the stability of open and closed loop systems
- Wear simulators
- Perform practically a PID control of a second order system with a PLC as a regulator

Related activities:
- Reading and study of teaching materials
- Practices
- Exercises solved in class
- Exercises to be solved in class, team
- Homeworks
- Use of simulators

Full-or-part-time: 10h 30m
- Theory classes: 3h
- Laboratory classes: 1h
- Guided activities: 0h 30m
- Self study: 6h
- Unit 4 (Project)

Description:
Resolution of a project. The Gantt diagram. Team work. The documentation of the projects. Work methodologies
Make a project of automation with PLC justifying calculations, selection of materials, GRAFCETs, securities, programs, electrical diagrams, connection to PLC, use of expansion modules of inputs and outputs, digital and analog, KOP, preparation of budget and calculation of energy consumption.

Specific objectives:
At the end of the activities the student will be able to:
- Do a full automation project.
- Make Gantt charts.
- Make project reports.
- Teamwork.
- Search and find information related to the materials of the project.

Related activities:
Complete reading of this guide (without annexes)
Elaboration of a Gantt chart
Rules teamwork
Attainment Targets
Completion of a technical report sections
Sending Athena

Full-or-part-time: 25h
Theory classes: 3h
Guided activities: 2h
Self study: 20h
- Unit 5

Description:
Introduction to data acquisition systems, supervision and control. Basic Elements. Distribution of basic elements and communication between them. The graphical interface with the latest features and typical components. Data acquisition and control variables: characteristics and configuration. Introduction to industrial communications.

Specific objectives:
Upon completion of the activities the student will be able to:
- Explain what we mean by data acquisition system, supervision and control and what are its basic elements.
- Recognize the responsibility of a monitoring system and control the operation of the plant controlled.
- Explain the basic capabilities offered by commercial software monitoring and control its use.

Related activities:
Complete reading of study guide
Read Chapter 1 Systems Supervisión CEA-IFAC (CEA-IFAC_Cuadernos_Supervisión_1.pdf file)
Taking a
Taking 2
Taking 3
Reading Annex 3
4 Commissioning
Fill the template of time spent
Shipping to Virtual Campus
Problem sessions
Homework problems

Full-or-part-time: 2h
Theory classes: 1h
Self study: 1h

GRADING SYSTEM

- Partial Exams: 40% (20% each of the 2 that will be carried out). These exams will be individual, writing and performed during class hours.
- Practice control: 10%
- Exercises and class room problems: 20%
- Practices: 10%
- Competence "efficient use of information resources": 10%. This competency must be demonstrated by the complete and correct selection of the components of the course project.
- Course project. 10%.
This subject has no re-evaluation because it is based on a continuous assessment system in which each student has to add up grades throughout the course, many of them derived from teamwork both in class and out of class.

EXAMINATION RULES.

No further delivery to the campus, or in hand when this is proposed, which is made entirely by computer and office tools, and PDF format file. Only be given exercises hand writted when carried out in the same class session. Which are outside of class, will always be machine made and PDF.
Practices are hand delivered solved unless otherwise indicated.
For partial controls, one page, with annotations only for one side, will be allowed for issues which should not be relied on in memory and, if necessary, a scientific calculator. It is completely forbidden to use mobile telephony. In case of need to wait for a telephone call or message, the professor must be notified before the exam.
BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Computer material:
- Notes and materials for the course

Other resources:
Study material for each unit or topic of the subject related to the theory, practices and exercises.