820014 - OP - Production Organisation

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 732 - OE - Department of Management
Academic year: 2018
Degree:
- Bachelor’s Degree in Electrical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Mechanical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Biomedical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Energy Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Industrial Electronics and Automatic Control Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Materials Engineering (Syllabus 2010). (Teaching unit Compulsory)
- Bachelor’s Degree in Biomedical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Electrical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Mechanical Engineering (Syllabus 2009). (Teaching unit Compulsory)
- Bachelor’s Degree in Chemical Engineering (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching Staff
Coordinator: Bruno Domenech
Others: Ernesto Garrido - Xavier Grébol Nogueras - Rubén Martín Tort - Gemma Ros Escola

Opening Hours
Timetable: To be arranged by email.

Prior Skills
None.

Requirements
None.

Degree Competences to Which the Subject Contributes

Specific:
4. Understand the applications of business organisation.
5. Understand the basics of production and manufacturing systems.

Transversal:
2. Entrepreneurship and Innovation - Level 2. Taking initiatives that give rise to opportunities and to new products and solutions, doing so with a vision of process implementation and market understanding, and involving others in projects that have to be carried out.
820014 - OP - Production Organisation

Teaching methodology

The course has 4 different typologies of sessions along the semester:
- Theory: explanation of the theoretical concepts and resolution of small practical examples (20% of the time)
- Problems: resolution in group of practical exercices to deepen on the theoretical concepts (10% of the time)
- Laboratory: resolution of mathematical models using specialised software (10% of the time)
- Selflearning: guided activities as well as personal and non-in-person study (60% of the time)

Learning objectives of the subject

Show the main ideas of production, its relationship with the logistics area and other management elements of the enterprise
Give to the students the idea of the importance of decision making when managing logistic and production systems.
Prepare the student to different techniques to schedule and control activites.
Prepare the student to solve fuzzy problems.
Teach the student quatitative techniques applicable to the solution of management problems

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h 30.00%</th>
<th>Hours medium group: 0h 0.00%</th>
<th>Hours small group: 15h 10.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided activities: 0h 0.00%</td>
<td>Self study: 90h 60.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Concept of production and productive system. Typologies of productive systems. Typology of decisions in production management. Concept and classifications of costs. Criteria for the evaluation and selection of investments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location and distribution</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheduling</th>
<th>Learning time: 30h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production Planning</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Concept of operations planning. Characteristics of a plan, horizon, frequency, robustness, degree of detail. Master plan, intuitive methods, Bowman model, linear models, models based on graphs theory.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventory management for independent demand</th>
<th>Learning time: 35h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
820014 - OP - Production Organisation

Inventory Management for Dependent Demand

<table>
<thead>
<tr>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:
Structure of the product, list of materials, matrix-based and iterative procedures. MRP I. Planning of production resources.

Mathematical modelling

<table>
<thead>
<tr>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 10h</td>
</tr>
<tr>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:
System modelling using mathematical programming. Establishment of variables, constraints and objective. Differences between modelling and solving. Linear Programming and Integer Linear Programming.

Specific objectives:
To provide students with tools for modelling and solving problems. To provide students with the skills to differentiate between data and variables, costs and solutions, objective functions and constraints. To provide the tools to allow a student to obtain linear equivalences to nonlinear problems.

Qualification system

The final mark of the course is calculated as follows:

\[
NF = \max\{NF1; NF2\}
\]

\[
NF1 = 0.5 \cdot EF + 0.2 \cdot EP + 0.2 \cdot EL + 0.1 \cdot AC
\]

\[
NF2 = 0.6 \cdot EF + 0.2 \cdot EP + 0.2 \cdot EL
\]

EF = mark of the final examen
EP = mark of the midterm exam
EL = mark of the laboratory exam
AC = mark of the activities of continuous evaluation

In case of failing, a reevaluation exam can be carried out, which allows recovering 80% of the course (the mark of the laboratory exam, EL, is excluded). In order to be allowed to do such an exam, the global mark on the recorded part must not be lower than 3.

The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)
820014 - OP - Production Organisation

Bibliography

Basic:

Complementary:

