820019 - TMS - Environmental Technologies and Sustainability

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2019
Degree: BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)

ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: BARBARA SUREDA CARBONELL
Others: Primer quadrimestre:
OLGA ALCARAZ SENDRA - M21, M22, M23, T21
NURIA BORRÀS CRISTÓFOL - M11
IRENE LÓPEZ PEÑA - M12, M31
BARBARA SUREDA CARBONELL - M11, M12, M31, M32, T11, T12
ALBERT TURON FLORENZA - M21, M22, M23, M32

Prior skills
None

Requirements
None

Degree competences to which the subject contributes

Specific:
2. Understand the basic applications of environmental technologies and sustainability principles.

Transversal:
1. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 1. Analyzing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.
Learning objectives of the subject

- To give students an overview of the state of the world that focuses on limitations and imbalances.
- To analyse the concept of sustainable development and develop the ability to apply it in engineering.
- To make students aware of environmental and sustainable technologies and of their applications in the field of engineering: energy, transport, construction, etc.
- To analyse the role of technoscience and the social and environmental impact of technology.
- To apply the concepts and methods of the sustainability paradigm in the design, implementation, operational and decommissioning stages of any engineering project.
- To analyse existing systems and current and future problems in decision making on a global level.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30h</td>
<td>0h</td>
<td>30h</td>
</tr>
<tr>
<td>Total learning time: 150h</td>
<td>20.00%</td>
<td>0.00%</td>
<td>20.00%</td>
</tr>
</tbody>
</table>

Guided activities:

- Hours: 0h
- Percentage: 0.00%

Self study:

- Hours: 90h
- Percentage: 60.00%
820019 - TMS - Environmental Technologies and Sustainability

Content

<table>
<thead>
<tr>
<th>0. Course presentation</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>0.1 Introduction</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>0.2 Teachers</td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>0.3 Course objectives</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>0.4 Syllabus</td>
<td></td>
</tr>
<tr>
<td>0.5 Agenda</td>
<td></td>
</tr>
<tr>
<td>0.6 Programming Jobs</td>
<td></td>
</tr>
<tr>
<td>0.7 Bibliography</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. State of the world</th>
<th>Learning time: 50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>1.1 Ecological phases of mankind</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>1.2 Carrying capacity</td>
<td>Practical classes: 10h</td>
</tr>
<tr>
<td>1.3 The great acceleration; growth and limits to growth</td>
<td>Self study: 30h</td>
</tr>
<tr>
<td>1.4 The anthropocene</td>
<td></td>
</tr>
<tr>
<td>1.5 The globalization</td>
<td></td>
</tr>
</tbody>
</table>

Specific objectives:
- Understand the problems of the world from a number of perspectives: economic, environmental, cultural, etc.
- Analyse globalisation as it now stands and its relationship with sustainability.
2. Sustainable paradigm. Models of development. Sustainable Human Development

Description:
- 2.1 Sustainable Development concept
- 2.2 Mechanist paradigm vs. systemic paradigm. Complexity
- 2.3 Sustainability examples
- 2.4 Development models
- 2.5 Economics and environmental economy, and social economy

Specific objectives:
- Analyse the models of development
- Define the concept of sustainable development.
- Analyse the concept of sustainable development and its various interpretations.
- Analyse the application of the concept of sustainable development from industrial, political, social and economic perspectives.
- Understand the methodologies and instruments used to measure sustainable development.

Learning time:
- Theory classes: 8h
- Practical classes: 8h
- Self study: 24h

3. International organizations and multilateral agenda for 2030

Description:
- 3.1 Multilateral international policy
- 3.2 International reports, data and policies
- 3.3 International Agenda

Specific objectives:
- Understand the historical evolution of the political agenda and the international organizations.
- Analyze the role of the main international organizations.
- Analyze the multilateral agenda for 2030 and the main international treaties.
- Analyze the existing systems for decision-making at the international level

Learning time:
- Theory classes: 5h
- Practical classes: 5h
- Self study: 15h
4. Policies and technologies for sustainability

<table>
<thead>
<tr>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Practical classes: 5h</td>
</tr>
<tr>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:
- 4.1. Ethical dimension and corporate responsibility of companies and individuals
- 4.2. Methodologies for sustainability
- 4.3. Sectoral policies

Specific objectives:
- Analyze individual and organizations responsibility to achieve sustainability
- Draw up sustainability paradigms in the design of products and the different methodologies that can be applied to them.
- Understand how sustainability paradigms are specified in production processes and apply the various existing methodologies to specific examples.

Qualification system

Assessment methods: assignments, oral presentations, two examinations (mid-semester and at the end of the year), practical problems and exercises.

Final mark: mid-semester examination = 38%; exercises, dossier of practical problems = 14%; final examination = 38%; attendance = 10%

Absences of practices without justification penalize the final note of dossier of practical problems, progressively:

\[
\text{End note dossier} = (1 - 0.0817 \times \text{ Nº of faults assistance}) \times \text{Provisional note of dossier of practical problems}
\]

Assessment criteria for generic competencies:
- Sustainability and social commitment = final mark.

At the end of the semester there will be the reexamination exam.

The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)
Bibliography

Basic:

Complementary:

Others resources:

https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/