Course guides
820023 - BMB - Biomechanics

Unit in charge: Barcelona East School of Engineering
Teaching unit: 702 - CEM - Department of Materials Science and Engineering.

Degree: BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: DANIEL RODRÍGUEZ RIUS
Others: Rodríguez Rius, Daniel Lluma Fuentes, Jordi

REQUIREMENTS

SISTEMES MECÀNICS - Prerequisit
Fisiologia - Prerequisit

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEBIO-260. Analyse and reduce the loads applied to a biomechanical system. Assess the kinematic behaviour and strength of a joint and the strength behaviour of human tissue.

Transversal:
5. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
6. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
7. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.

TEACHING METHODOLOGY

There are 15 master sessions. Each one is dedicated to one of the content blocks. In the lectures the student adopts a receptive role. Lab practices and problems will be conducted in seminar sessions. Problems are individual and practices are made in teams.

LEARNING OBJECTIVES OF THE SUBJECT

1. Acquire the basic concepts and knowledge of biomechanics.
2. To know the structure, function and movement of the human body and the various joints.
3. To know the kinematic behavior of human joints and tissues.
4. To know the bioinstrumentation used for the analysis of biomechanics.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>22,5</td>
<td>15.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>37,5</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction

Description:
Introduction to the subject.

Specific objectives:
Learn the key elements that make up the knowledge of mechanical physics.

Full-or-part-time: 3h
Theory classes: 1h
Laboratory classes: 0h 30m
Self study: 1h 30m

Fundamentals of biomechanics

Description:
Kinematics.
Kinetics.
Control of the movement.
Joint stability.

Specific objectives:
Learn the basics and dynamic mechanical analysis and its application to the human body movement and the measurement tools.

Related activities:
Lab practice.
Experimental work.
Problems.

Full-or-part-time: 15h
Theory classes: 6h
Self study: 9h
Tissue biomechanics of the musculoskeletal system

Description:
Bone biomechanics
Biomechanics of cartilage
Biomechanics of tendon and ligament
Biomechanics of muscle
Biomechanics of nervous tissue
Biomechanics of blood

Specific objectives:
Learn the key elements that make up the basics of biomechanics of tissues and be able to apply the methods to the study of musculoskeletal biomechanics.

Related activities:
Lab practice and experimental work.

Full-or-part-time: 22h
Theory classes: 8h 30m
Self study: 13h 30m

Joint biomechanics

Description:
Biomechanics of the hip
Biomechanics of the knee
Ankle Biomechanics
Foot Biomechanics
Shoulder Biomechanics
Biomechanics of the elbow
Biomechanics of the wrist

Specific objectives:
Learn the key elements that make up the basics of biomechanics of the joint structures and be able to apply the methods to the study of musculoskeletal biomechanics.

Related activities:
Lab practices
Problems
Experimental work

Full-or-part-time: 32h 30m
Theory classes: 7h
Laboratory classes: 6h
Self study: 19h 30m
Biomechanics of the spine

Description:
Biomechanics of the spine

Specific objectives:
Learn the key elements that make up the basics of biomechanics of the spine and be able to apply the methods of biomechanics to study the locomotor system.

Related activities:
Lab practices
Problems
Experimental work

Full-or-part-time: 12h 30m
Theory classes: 3h
Laboratory classes: 2h
Self study: 7h 30m

Human gait

Description:
Normal human gait

Specific objectives:
To learn the cycle of normal human gait and to determine, based on the same patterns, the role of each of the joints and tissues.

Related activities:
Lab practices
Experimental work

Full-or-part-time: 10h
Theory classes: 4h
Self study: 6h

Applied biomechanics

Description:
Pathological human gait
Analysis of forces and pressures. Parameters of human gait
Motion analysis system. Parameters of human gait
Electromyography. Parameters of human gait

Specific objectives:
To learn about the instruments and biomechanical analysis of human gait and analyze their results.

Related activities:
Lab practices.

Full-or-part-time: 55h
Theory classes: 8h
Laboratory classes: 14h
Self study: 33h
GRADING SYSTEM

The grade is based on:
Participation in seminars: 10%
Evaluation of practices and problems: 40%
Parcial test: 15%
Final test: 35%
This subject does not include a reevaluation test.

EXAMINATION RULES.

Attendance at practices and seminars is mandatory.
The use of devices with communication capabilities is not allowed.

BIBLIOGRAPHY

Basic:

Complementary: