Degree competences to which the subject contributes

Specific:
CEBIO-260. Analyse and reduce the loads applied to a biomechanical system. Assess the kinematic behaviour and strength of a joint and the strength behaviour of human tissue.

Transversal:
5. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.
6. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
7. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.

Learning objectives of the subject

1. Acquire the basic concepts and knowledge of biomechanics.
2. To know the structure, function and movement of the human body and the various joints.
3. To know the kinematic behavior of human joints and tissues.
4. To know the bioinstrumentation used for the analysis of biomechanics.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>37h 30m</td>
<td>0h</td>
<td>22h 30m</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
<td>15.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
<td></td>
</tr>
</tbody>
</table>
820023 - BMB - Biomechanics

Content

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Learning time: 3h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Introduction to the subject.</td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Specific objectives: Learn the key elements that make up the knowledge of mechanical physics.</td>
<td>Laboratory classes: 0h 30m</td>
</tr>
<tr>
<td></td>
<td>Self study: 1h 30m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fundamentals of biomechanics</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities: Lab practice. Experimental work. Problems.</td>
<td>Self study: 9h</td>
</tr>
<tr>
<td>Specific objectives: Learn the basics and dynamic mechanical analysis and its application to the human body movement and the measurement tools.</td>
<td></td>
</tr>
</tbody>
</table>
Tissue biomechanics of the musculoskeletal system

Learning time: 22h
- Theory classes: 8h 30m
- Self study: 13h 30m

<table>
<thead>
<tr>
<th>Description:</th>
<th>Related activities:</th>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone biomechanics</td>
<td>Lab practice and experimental work.</td>
<td>Learn the key elements that make up the basics of biomechanics of tissues and be able to apply the methods to the study of musculoskeletal biomechanics.</td>
</tr>
<tr>
<td>Biomechanics of cartilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of tendon and ligament</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of muscle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of nervous tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of blood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Joint biomechanics

Learning time: 32h 30m
- Theory classes: 7h
- Laboratory classes: 6h
- Self study: 19h 30m

<table>
<thead>
<tr>
<th>Description:</th>
<th>Related activities:</th>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomechanics of the hip</td>
<td>Lab practices</td>
<td>Learn the key elements that make up the basics of biomechanics of the joint structures and be able to apply the methods to the study of musculoskeletal biomechanics.</td>
</tr>
<tr>
<td>Biomechanics of the knee</td>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>Ankle Biomechanics</td>
<td>Experimental work</td>
<td></td>
</tr>
<tr>
<td>Foot Biomechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Biomechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of the elbow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics of the wrist</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biomechanics of the spine

Description:
Biomechanics of the spine

Related activities:
Lab practices
Problems
Experimental work

Specific objectives:
Learn the key elements that make up the basics of biomechanics of the spine and be able to apply the methods of biomechanics to study the locomotor system.

Learning time: 12h 30m
Theory classes: 3h
Laboratory classes: 2h
Self study: 7h 30m

Human gait

Description:
Normal human gait

Related activities:
Lab practices
Experimental work

Specific objectives:
To learn the cycle of normal human gait and to determine, based on the same patterns, the role of each of the joints and tissues.

Learning time: 10h
Theory classes: 4h
Self study: 6h
The grade is based on:

- Participation in seminars: 10%
- Evaluation of practices and problems: 40%
- Parcial test: 15%
- Final test: 35%

This subject does not include a reevaluation test.

Qualification system

Description:
Pathological human gait
Analysis of forces and pressures. Parameters of human gait
Motion analysis system. Parameters of human gait
Electromyography. Parameters of human gait

Related activities:
Lab practices.

Specific objectives:
To learn about the instruments and biomechanical analysis of human gait and analyze their results.

Learning time: 55h
- Theory classes: 8h
- Laboratory classes: 14h
- Self study: 33h

Bibliography

Basic:

Complementary:

Regulations for carrying out activities

Attendance at practices and seminars is mandatory.
The use of devices with communication capabilities is not allowed.