820039 - MCSBB - Modelling and Control of Biomedical Systems

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2019
Degree: BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6 Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Montserrat Vallverdú
Others: Pedro Gomis

Opening hours
Timetable: Teachers' e-mail and timetable are published in ATENEA. Through the mail can be requested to arrange hours of individualized attention.

Prior skills
There are no prerequisites.

Requirements
There are not

Degree competences to which the subject contributes

Transversal:
1. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

Teaching methodology
The course uses participative lectures by 15%, the project-based learning by 35% and teamwork by 50%. Entire course will be held in a computer lab.

Learning objectives of the subject
At the end of the course, the student will be able to:
• Analyze the behavior of a dynamical system; use software tools; design models to understand its performance; evaluate various strategies for its operation.
• Apply proper working methods of modeling biomedical systems, so that can be applied to solve problems in the field of biomedical engineering but also in general engineering.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th></th>
<th>Hours small group:</th>
<th></th>
<th>Self study:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
<td></td>
<td></td>
<td>45h</td>
<td>30.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
<th>Related activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1: Mathematical Modeling</td>
<td>30h</td>
<td>Generalized system properties. Linear models of biomedical systems. Computer analysis and simulation using MATLAB and SIMULINK.</td>
<td>Lectures and laboratory work in computer lab room including guided projects.</td>
</tr>
<tr>
<td>T3: Identification of Biomedical Control Systems</td>
<td>26h</td>
<td>Basic problems in biomedical system analysis. Identification methods. Parameter estimation. Identification of physiological systems.</td>
<td>Lectures and laboratory work in computer lab room including guided projects.</td>
</tr>
<tr>
<td>Topic</td>
<td>Learning Time</td>
<td>Description</td>
<td>Related activities</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| **T4: Optimization in Biomedical System Control** | **18h** | - Theory classes: 2h 30m
- Laboratory classes: 1h 30m
- Self study: 14h |
Application to models of biomedical systems: Optimization in systems with negative feedback; Single-parameter optimization; Constrained optimization.
Related activities: Lectures and laboratory work in computer lab room including guided projects. |
| **T5: Nonlinear Analysis of Biomedical Control Systems: Complex Dynamics** | **16h** | - Theory classes: 2h 30m
- Laboratory classes: 1h 30m
- Guided activities: 0h
- Self study: 12h |
Related activities: Lectures and laboratory work in computer lab room including guided projects. |
| **T6: Application of modeling techniques to biomedical systems** | **38h** | - Theory classes: 12h 30m
- Laboratory classes: 7h 30m
- Self study: 18h |
Several models of biomedical systems will be developed in Matlab and Simulink. Tools of modeling and simulation will be applied. Various strategies for its operation will be evaluated.
Related activities: Lectures and laboratory work in computer lab room including guided projects. |
La evaluación se realizará mediante la valoración por parte del profesorado de las siguientes partes:

Entregables correspondientes a la parte de teoría (NLL): 30%
Prácticas de Laboratorio incluyendo los informes entregados de cada sesión (NLab): 30%
Trabajo final realizado en grupo (NTF): 35%
Evaluación de la competencia genérica (NCG): 5%

No habrá pruebas de exámenes parciales ni finales

Nota final = 0,3 NLL + 0,3 NLab + 0,35 NTF + 0,05 NCG

Qualification system

Regulations for carrying out activities

· In theory class, deliverables guided exercises will be developed, conducted individually or in groups of 2 students
· The lab will be assessed based on class attendance and delivery of practice reports. Practices can be individual or in groups of 2 students.
· The final work will take place individually or in groups of 2 students. Students may choose the final work with the advice and approval of the teacher. It will be presented orally with audiovisual support. Generic competence will be evaluated.

If it is not done any of the activities of the laboratory or deliverable of continuous assessment, it will be considered as not scored.

Bibliography

Basic:

