820055 - IAAE - Artificial Intelligence for Engineering

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 723 - CS - Department of Computer Science
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)

ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: GERARD ESCUDERO BAKX
Others:
Prime quadrimestre:
GERARD ESCUDERO BAKX - T11
SAMIR KANAAN IZQUIERDO - T11

Segon quadrimestre:
GERARD ESCUDERO BAKX - M11
SAMIR KANAAN IZQUIERDO - M11

Opening hours
Timetable: Check the bulletin board information departments.

Prior skills
Computer Science course (Python) or equivalent.

Requirements
There are no previous requirements.

Degree competences to which the subject contributes

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
820055 - IAAE - Artificial Intelligence for Engineering

Teaching methodology

The course consists of four classroom hours per week in lab: two correspond to theoretical expositions combined with guided exercises performed with a computer and two of laboratory practice. Should carry out a non-contact techniques are applied to a problem studied for the degree. The course uses the narrative approach (theory) by 10%, a problem-based by 10%, attendance group work (laboratory) by 20%, non-contact individual work by 27% and non-contact work group by 33%.

Learning objectives of the subject

The course aims:
- To familiarize students with basic concepts in the fields of Machine Learning and Pattern Analysis
- To provide tools of Artificial Intelligence that will be useful to apply them to engineering problems

Study load

| Total learning time: 150h | Hours large group: 0h 0.00% | Hours medium group: 0h 0.00% | Hours small group: 60h 40.00% | Guided activities: 0h 0.00% | Self study: 90h 60.00% |
Content

Introduction

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterns analysis from the standpoint of artificial intelligence</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Applications in the fields of engineering and technology</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Self study: 8h</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Practices 1 and 2: introduction to python</td>
<td></td>
</tr>
</tbody>
</table>

Characterization data using attributes

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data representation</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Treatment of missing values and normalization</td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Distance measures</td>
<td>Self study: 8h</td>
</tr>
<tr>
<td>Feature extraction: principal component analysis (PCA), independent component analysis (ICA)</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td></td>
</tr>
<tr>
<td>Practice 3: representation, normalization, null values, covariances, correlations, binarization, distance matrices, similarities, etc.</td>
<td></td>
</tr>
<tr>
<td>Practice 4: PCA + ICA</td>
<td></td>
</tr>
</tbody>
</table>
Clustering

Description:
- k-means, PAM
- Dendrograms
- Introduction to Spectral Clustering

Related activities:
- Lectures
- Practice 5: kmeans and PAM
- Practice 6: dendrogram

Learning time: 30h
- Theory classes: 14h
- Laboratory classes: 6h
- Self study: 10h

Optimization

Description:
- Simulated annealing and gradient descent
- Genetic Algorithms

Related activities:
- Lectures
- Practice 7: simulated annealing and gradient descent
- Practice 8: genetic algorithms

Learning time: 26h
- Theory classes: 4h
- Laboratory classes: 4h
- Other activities: 10h
- Self study: 8h
Classification

Learning time:
- Theory classes: 18h
- Laboratory classes: 10h
- Self study: 18h

Description:
- Based on distances: k Nearest Neighbours, linear classifier and supervised k-means
- Based on probabilities: Naïve Bayes and introduction to Maximum Entropy
- Based on rules: Decision Trees (splitting and entropy) and an introduction to AdaBoost
- Linear classifier with kernels and Support Vector Machines (SVMs)

Related activities:
- Lectures
- Practice 9: classifiers based on distances
- Practice 10: classifiers based on probabilities
- Practice 11: rule-based classifiers
- Practice 12: SVMs

Theory of statistical estimation

Learning time:
- Theory classes: 4h
- Self study: 4h

Description:
- Bias and variance
- Test Protocols: single and cross-validation
- Statistical tests
- Measures of evaluation

Related activities:
- Lecture

Other problems in the pattern analysis

Learning time:
- Theory classes: 4h
- Self study: 4h

Description:
- Regression, anomaly detection, projections...

Related activities:
- Lecture
Qualification system

The evaluation will be conducted through the assessment by teachers of different laboratory practice (which will mean 50%) and class work (which will represent the other 50%).

Bibliography

Basic:

Complementary:

Others resources:

Documentation uploaded to Athena by teachers.