Course guide
820055 - IAAE - Artificial Intelligence for Engineering

Unit in charge: Barcelona East School of Engineering
Teaching unit: 723 - CS - Department of Computer Science.

Degree: BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: GERARD ESCUDERO BAKX

Others:
Primer quadrimestre:
GERARD ESCUDERO BAKX - Grup: M11
RAMON SANGÜESA SOLE - Grup: M11

Segon quadrimestre:
GERARD ESCUDERO BAKX - Grup: M10
RAMON SANGÜESA SOLE - Grup: M10

PRIOR SKILLS

Computer Science course (Python) or equivalent.

REQUIREMENTS

There are no previous requirements.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

The course consists of four classroom hours per week in lab: two correspond to theoretical expositions combined with guided exercises performed with a computer and two of laboratory practice. Should carry out a non-contact techniques are applied to a problem studied for the degree. The course uses the narrative approach (theory) by 10%, a problem-based by 10%, attendance group work (laboratory) by 20%, non-contact individual work by 27% and non-contact work group by 33%.
LEARNING OBJECTIVES OF THE SUBJECT

The course aims:
- To familiarize students with basic concepts in the fields of Machine Learning and Pattern Analysis
- To provide tools of Artificial Intelligence that will be useful to apply them to engineering problems

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>60.0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90.0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction

Description:
Patterns analysis from the standpoint of artificial intelligence
Applications in the fields of engineering and technology

Related activities:
Lecture
Practices 1 and 2: introduction to python

Full-or-part-time: 16h
Theory classes: 2h
Laboratory classes: 6h
Self study : 8h

Characterization data using attributes

Description:
Data representation
Treatment of missing values and normalization
Distance measures
Feature extraction: principal component analysis (PCA), independent component analysis (ICA)

Related activities:
lectures
Practice 3: representation, normalization, nul values, covariances, correlations, binarization, distance matrices, similarities, etc.
Practice 4: PCA + ICA

Full-or-part-time: 16h
Theory classes: 4h
Laboratory classes: 4h
Self study : 8h
Clustering

Description:
- k-means, PAM
- Dendrograms
- Introduction to Spectral Clustering

Related activities:
- Lectures
- Practice 5: kmeans and PAM
- Practice 6: dendrogram

Full-or-part-time: 30h
- Theory classes: 14h
- Laboratory classes: 6h
- Self study: 10h

Optimization

Description:
- Simulated annealing and gradient descent
- Genetic Algorithms

Related activities:
- Lectures
- Practice 7: simulated annealing and gradient descent
- Practice 8: genetic algorithms

Full-or-part-time: 26h
- Theory classes: 4h
- Laboratory classes: 4h
- Other activities: 10h
- Self study: 8h

Classification

Description:
- Based on distances: k Nearest Neighbours, linear classifier and supervised k-means
- Based on probabilities: Naïve Bayes and introduction to Maximum Entropy
- Based on rules: Decision Trees (splitting and entropy) and an introduction to AdaBoost
- Linear classifier with kernels and Support Vector Machines (SVMs)

Related activities:
- Lectures
- Practice 9: classifiers based on distances
- Practice 10: classifiers based on probabilities
- Practice 11: rule-based classifiers
- Practice 12: SVMs

Full-or-part-time: 46h
- Theory classes: 18h
- Laboratory classes: 10h
- Self study: 18h
Theory of statistical estimation

Description:
Bias and variance
Test Protocols: single and cross-validation
Statistical tests
Measures of evaluation

Related activities:
Lecture

Full-or-part-time: 8h
Theory classes: 4h
Self study: 4h

Other problems in the pattern analysis

Description:
Regression, anomaly detection, projections...

Related activities:
Lecture

Full-or-part-time: 8h
Theory classes: 4h
Self study: 4h

GRADING SYSTEM

The evaluation will be conducted through the assessment by teachers of different laboratory practice (which will mean 50%) and class work (which will represent the other 50%).
This subject has neither exams nor reevaluation.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
Documentation uploaded to Athena by teachers.