820055 - IAAE - Artificial Intelligence for Engineering

<table>
<thead>
<tr>
<th>Coordinating unit:</th>
<th>295 - EEBE - Barcelona East School of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>723 - CS - Department of Computer Science</td>
</tr>
<tr>
<td>Academic year:</td>
<td>2018</td>
</tr>
<tr>
<td>Degree:</td>
<td>BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)</td>
</tr>
<tr>
<td></td>
<td>BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)</td>
</tr>
<tr>
<td>ECTS credits:</td>
<td>6</td>
</tr>
<tr>
<td>Teaching languages:</td>
<td>Catalan, Spanish</td>
</tr>
</tbody>
</table>

Teaching staff

Coordinator: Gerard Escudero
Samir Kanaan

Others: Gerard Escudero
Samir Kanaan

Opening hours

Timetable: Check the bulletin board information departments.

Prior skills

Computer Science course (Python) or equivalent.

Requirements

There are no previous requirements.

Degree competences to which the subject contributes

Transversal:

1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
The course aims:
- To familiarize students with basic concepts in the fields of Machine Learning and Pattern Analysis
- To provide tools of Artificial Intelligence that will be useful to apply them to engineering problems

Learning objectives of the subject

Total learning time: 150h

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>60</td>
<td>40.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
820055 - IAAE - Artificial Intelligence for Engineering

Content

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

Description:
Patterns analysis from the standpoint of artificial intelligence
Applications in the fields of engineering and technology

Related activities:
Lecture
Practices 1 and 2: introduction to python

<table>
<thead>
<tr>
<th>Characterization data using attributes</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study : 8h</td>
</tr>
</tbody>
</table>

Description:
Data representation
Treatment of missing values and normalization
Distance measures
Feature extraction: principal component analysis (PCA), independent component analysis (ICA)

Related activities:
lectures
Practice 3: representation, normalization, nul values, covariances, correlations, binarization, distance matrices, similarities, etc.
Practice 4: PCA + ICA
Clustering

Description:
- k-means, PAM
- Dendrograms
- Introduction to Spectral Clustering

Related activities:
- Lectures
- Practice 5: kmeans and PAM
- Practice 6: dendrogram

Learning time: 30h
- Theory classes: 14h
- Laboratory classes: 6h
- Self study: 10h

Optimization

Description:
- Simulated annealing and gradient descent
- Genetic Algorithms

Related activities:
- Lectures
- Practice 7: simulated annealing and gradient descent
- Practice 8: genetic algorithms

Learning time: 26h
- Theory classes: 4h
- Laboratory classes: 4h
- Other activities: 10h
- Self study: 8h
Classification

Learning time: 46h
Description:
Based on distances: k Nearest Neighbours, linear classifier and supervised k-means
Based on probabilities: Naïve Bayes and introduction to Maximum Entropy
Based on rules: Decision Trees (splitting and entropy) and an introduction to AdaBoost
Linear classifier with kernels and Support Vector Machines (SVMs)
Related activities:
Lectures
Practice 9: classifiers based on distances
Practice 10: classifiers based on probabilities
Practice 11: rule-based classifiers
Practice 12: SVMs

Theory of statistical estimation

Learning time: 8h
Description:
Bias and variance
Test Protocols: single and cross-validation
Statistical tests
Measures of evaluation
Related activities:
Lecture

Other problems in the pattern analysis

Learning time: 8h
Description:
Regression, anomaly detection, projections...
Related activities:
Lecture
The evaluation will be conducted through the assessment by teachers of different laboratory practice (which will mean 50%) and class work (which will represent the other 50%).

Bibliography

Basic:

Complementary:

Others resources:
- Documentation uploaded to Athena by teachers.