820140 - EDEE - Electric Drives

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 709 - DEE - Department of Electrical Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff

Coordinator: SERGI FILLET CASTELLA
Others:

Primer quadrimestre:
SERGI FILLET CASTELLA - T11, T12
GUILLERMO YESTE MAYORAL - T11, T12

Segon quadrimestre:
SERGI FILLET CASTELLA - M11, M12, M13
GUILLERMO YESTE MAYORAL - M11, M12

Prior skills

Requirements

MÀQUINES ELÈCTRIQUES II - Prerequisite

Degree competences to which the subject contributes

Specific:
CEELE-20. Understand machine control and electric drives and their applications.
CEELE-26. Understand automatic regulation and control techniques and their application to industrial automation.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

The course uses master classes by 45%, individual work by 25%, work in groups (cooperative or not) by 30%.

Learning objectives of the subject

Understanding the behaviour of the variable-speed electric drives, under the point of view of a whole set made up of power electronics, electric machines and mechanical loads.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Theory classes</th>
<th>Laboratory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. POWER ELECTRÒNICS AND DRIVES.
Description: Classification and basic characteristics of electrical drives.
Specific objectives: Power electronics for electric drives. Types of electric drives. Performance characteristics. Variable speed operation. Four-quadrant operation.</td>
<td>15h</td>
<td>4h</td>
<td>1h</td>
<td>10h</td>
</tr>
<tr>
<td>2. INDUCTION THREE-PHASE ASYNCHRONOUS MOTOR IN STEADY STATE.
Description: Application of the steady state induction motor model to the starting process and to variable-speed operation.
Specific objectives: Equivalent circuits. Motor starting. Variable-speed operation. Variable frequency-fed motor. Constant torque and constant speed operation. Current-fed motor.</td>
<td>19h 40m</td>
<td>7h</td>
<td>1h</td>
<td>11h 40m</td>
</tr>
<tr>
<td>3. SYNCHRONOUS MOTORS.
Description: Variable-speed drives based on synchronous motor.
Specific objectives: Classification and equivalent circuits. Voltage and current-fed schemes. Self-commutated systems. Cycloconverters application.</td>
<td>17h 50m</td>
<td>7h</td>
<td>1h</td>
<td>9h 50m</td>
</tr>
</tbody>
</table>
4. Dynamic Modelling of AC Machines

Learning time: 23h 20m
Theory classes: 9h
Laboratory classes: 1h
Self study: 13h 20m

Description:
Dynamic models of AC machines.

Specific objectives:

5. Non Vectorial Control of AC Machines

Learning time: 12h 20m
Theory classes: 3h
Laboratory classes: 1h
Self study: 8h 20m

Description:
Control techniques for AC machines.

Specific objectives:
Classification of control techniques. Scalar control. Vector control. Applications for the asynchronous and the synchronous machines.

6. Vectorial Control on Altern Current Machines

Learning time: 23h 20m
Theory classes: 9h
Laboratory classes: 1h
Self study: 13h 20m

Description:
content english

7. Non Conventional Electric Machines

Learning time: 8h 30m
Theory classes: 5h
Self study: 3h 30m

Description:
content english
820140 - EDEE - Electric Drives

Qualification system

The evaluation will be conducted through the assessment by the teacher, with the following weights assigned to evaluated activities:
Team Work: 30%, laboratory practice: 30% Final exam: 40%.

Bibliography

Basic:

