820143 - EMDEE - Electrical Machines Design

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: Ramon Bargalló Perpiña
Others: Primer quadrimestre:
RAMON BARGALLO PERPIÑA - T11

Prior skills
MArray analysis.
Fourier Methods.
Electromagnetics.
Electrical Machines 1 and 2.
Use of scientific calculator (HP 50G, CFX9950, other)
Use of MATLAB

Requirements
Electrical Machines 1 and 2.

Degree competences to which the subject contributes
Specific:
1. Carry out calculations for the design of electrical machines.
2. Apply regulations and standards based on sound criteria.
3. Summarise information and undertake self-directed learning activities.

Transversal:
4. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology
Expositive methodology for theory classes.
PBL for exercises classes.
Training on FE software on laboratory classes.
820143 - EMDEE - Electrical Machines Design

Learning objectives of the subject

- To do to the student a general scope in the field of electrical machines and drives. The main treated aspects are their modelling and design.
- To put into practice the FE method to analyse and design electrical machines and apparatus
- Explain general rules and methods for size electrical machines.
- Explain the main characteristics for materials used in the electrical machines to obtain an optimal design (technical, economical, environmental, etc. criterions are used)

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 30h</td>
<td>20.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time: 19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical machines modeling using electromagnetic equations.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Inductance analysis using FE software.</td>
</tr>
<tr>
<td></td>
<td>Actuator analysis using FE software.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windings for electrical machines</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
<tr>
<td>Description:</td>
<td>Basis: salient pole windings, slot windings, end windings. Phase windings. (\text{MMF}) and (\text{EMF}). Fractional windings. Other windings.</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Winding design for a AC machine. Analysis of (\text{MME}) and (\text{EMF}).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>General concepts and limitations in the design of electrical machines.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
<tr>
<td>Description:</td>
<td>General expressions for torque. Standards. Scale laws. Flux constant and weakening field work of electrical machines.</td>
</tr>
</tbody>
</table>
Optimal design methods.

Description:

Related activities:
Optimal design of an actuator.

Learning time: 18h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 10h

Parameter and losses calculation

Description:
FE determination of: losses, emf, cogging torque, torque, inductance, resistance, capacitance, etc.

Related activities:
Transformer analysis.

Learning time: 15h
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 10h

Heat transfer

Description:

Related activities:

Learning time: 18h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 10h
Design process

Description:
General formulation for sizing electrical machines. Application to: asynchronous, synchronous and permanent magnet machines. Every course one or more detailed process design will be developed.

Related activities:
- FE analysis of:
 - asynchronous machine. Steady state characteristics
 - synchronous PM machine. Torque-angle characteristic, cogging torque, EMF determinations.
 - Radial forces. Noise analysis.

Insulation of electrical machines

Description:
Insulation materials. Monitoring insulation. Statistical analysis. Predictive analysis

Qualification system

- **Final test:** 20%
- **Laboratory:** 20%
- **Homework exercis+classe exercises:** 20%
- **Homework project (design an electrical machines):** 40%

Regulations for carrying out activities

Final test with open books. NO final reexam.
Bibliography

Basic:

Complementary:

