Course guide
820156 - GEO - Wind Energy Generation

Unit in charge: Barcelona East School of Engineering
Teaching unit: 709 - DEE - Department of Electrical Engineering.

Degree: BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish, English

LECTURER

Coordinating lecturer: ÁNGEL SILOS SÁNCHEZ

Others: ÁNGEL SILOS SÁNCHEZ

PRIOR SKILLS

- Basic knowledge about generation and distribution of electric energy as well as applied knowledge of renewable energy.

REQUIREMENTS

- It is not necessary to have completed another previous subject.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEELE-25. Understand the applications of power electronics.
CEELE-28. Understand the applications of renewable energies.
CEENE-250. Knowledge of the principles of operation of electric power transmission and distribution systems.

TEACHING METHODOLOGY

- In the theory classes, will be exposed and develop the theoretical foundations of programmed materials. They consist of theoretical explanations complemented by activities to encourage participation, discussion and critical analysis by students.
- In the classes of problems will arise and solve exercises related to the matters. Students should meet individually or in groups these problems and to deliver a report at the end of the course.
- At laboratory students will conduct laboratory practices as required and submit the relevant report with all practices along with appropriate calculations and critical considerations at the end of the course.
- A research report about a specific topic related to the subject will be done during the course with oral presentation.

LEARNING OBJECTIVES OF THE SUBJECT

- Understand world wind generation market.
- Understand the different technologies of wind generation of electricity.
- Know how to determine the location of wind resources.
- Understand the different possibilities of control of wind turbines.
- Understand its operation in the power system.
- Know how to model, simulate the whole farm system.
- Learn to perform a pre-dimensioning of wind systems.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>10.00</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. General concepts

Description:
1.1 Overview of wind energy conversion systems
1.2 Wind energy technology
1.3 WECS configurations
1.4 Grid code
1.5 National and international wind generation market

Specific objectives:
- Acquire an overview of wind power generation.

Related activities:
- Related exercises and practice 1.

Full-or-part-time: 16h 40m
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 11h 40m

2. The wind resource

Description:
2.1 General concepts
2.2 Variation in height and space
2.3 Variability of wind in time
2.4 Determination of gross energy yield
2.5 Assessment of resources
2.6 Wind measurements
2.7 Special offshore effects

Specific objectives:
- Define wind site resources taking account selected turbines.

Related activities:
- Related exercises and practices 2 and 3.

Full-or-part-time: 23h 20m
- Theory classes: 3h
- Laboratory classes: 4h
- Self study: 16h 20m
3. Fundamentals of wind energy conversion system control

Description:
3.1 Wind turbine aerodynamics
3.2 Maximum power point tracking (MPPT) control
3.3 Wind turbine components

Specific objectives:
- Learn about aerodynamic control of the wind turbine.

Related activities:
- Related exercises and practices 4 and 5.

Full-or-part-time: 33h 20m
Theory classes: 6h
Practical classes: 4h
Self study: 23h 20m

4. Wind generators and modelling

Description:
4.1 Reference frame transformations
4.2 Induction generator models
4.3 Synchronous generators

Specific objectives:
- Understand synchronous and induction generator modeling.

Related activities:
- Practice 6.

Full-or-part-time: 16h 40m
Theory classes: 3h
Laboratory classes: 2h
Self study: 11h 40m

5. Power Converters in wind energy conversion systems

Description:
5.1 Two-level voltage source converters
5.2 Three-level neutral point clamped converters
5.3 Comparison 2-level and 3-level converters
5.4 Converter control

Specific objectives:
- Understand the differences between converter types.

Full-or-part-time: 10h
Theory classes: 3h
Self study: 7h
6. Wind Energy Conversion System Configurations

Description:
6.1 Fixed speed WECS
6.2 Variable speed induction generator WECS
6.3 Variable speed synchronous generator WECS

Specific objectives:
- Understand different WECS systems and analyze future trends.

Full-or-part-time: 10h
Theory classes: 3h
Self study: 7h

7. Wind farm layout

Description:
7.1 Wind farm layout design
7.2 Electrical grid collector design
7.3 Wind farm connected to high voltage alternative current (HVAC)
7.4 Wind farm connected to high voltage direct current (HVDC)

Specific objectives:
- Understand the different layout designs and electrical infrastructure of a wind farm.

Full-or-part-time: 10h
Theory classes: 3h
Self study: 7h

8. Grid Integration

Description:
8.1 Power system concepts
8.2 Wind power variability and limited predictability
8.3 Grid codes for Wind Turbines
8.4 Grid code requirements

Specific objectives:
- Understand network codes for wind farms.

Full-or-part-time: 10h
Theory classes: 3h
Self study: 7h

A. Annex IEC 61850

Description:

Specific objectives:
- Understand scope of the IEC 61850 for the electrical sector and for the wind sector.

Full-or-part-time: 10h
Theory classes: 3h
Self study: 7h
B. Other topics

Description:
- Wind Turbine classification
- Maintenance
- HVDC vs HVAC

Specific objectives:
- Include new interesting topics proposed by students.

Full-or-part-time: 10h
Theory classes: 3h
Self study : 7h

GRADING SYSTEM
- Research report with oral presentation (30%)
- Exercise report (10%)
- Final exam (35%)
- Laboratory report (25%)
Note 1: It's mandatory to perform a laboratory report to pass this subject.
Note 2: It's mandatory to perform all parts of this subject to pass it.
Nota 3: There is no reassessment test.

EXAMINATION RULES.
- The written test is face-to-face and individual.
- The laboratory report is in group and exercise report is individual.
- The research report with oral presentation is individual.
- In exercise and laboratory report will be assessed, where appropriate, the prior work with the presentation of results of each activity.

BIBLIOGRAPHY

Basic:

Complementary:
RESOURCES

Other resources:
- Papers, documentation and web pages of interest which will be delivered during the course.