820229 - SICIEIA - Information Systems and Industrial Communication

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6 Teaching languages: Catalan

Teaching staff
Coordinator: PEDRO PONSA ASENSIO
Others: Primer quadrimestre:
JAVIER FRANCISCO GÁMIZ CARO - T11, T12, T13, T14
MARC LLUVA SERRA - T11, T12
MANUEL LOZANO GARCÍA - T13, T14

Segon quadrimestre:
MANUEL LOZANO GARCÍA - M21, M22, M25, M26
PEDRO PONSA ASENSIO - M21, M22, M23, M24, M25, M26

Opening hours
Timetable: Room Office A5.42

Requirements
CONTROL INDUSTRIAL I AUTOMATITZACIÓ - Precorequisit

Degree competences to which the subject contributes

Specific:
2. Apply their knowledge to industrial informatics and communications.

3. Design automatic control systems.

Transversal:
06 URI N2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
820229 - SICIEIA - Information Systems and Industrial Communication

Teaching methodology

The course uses the teaching class, case study, examples, exercises and project based learning approach.

Learning objectives of the subject

1. Enter the student / the concepts of the various industrial communication techniques, terminology and the reference standards
2. To enable the student / a to discern the functional characteristics of wireless communications and communication networks to plan based industrial field buses.
4. Enter the student / the basic concepts of systems Supervisory Control and Data Acquisition and enable the student / a to define and configure the functionality of the (input-output historical databases, synoptic charts, etc..).

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td></td>
<td>60.00%</td>
</tr>
</tbody>
</table>

The course uses the teaching class, case study, examples, exercises and project based learning approach.
(ENG) Tema 1: Information systems

Description:
1.1. Data, instrumentation and knowledge.
1.2. Process, plant and Manufacturing Operation Management (MOM).
1.3. Database and structured query language.
1.4. Connected enterprise.
1.5. Intelligent instrumentation.

Related activities:
- Autonomous study
- Exercises
- Report

Specific objectives:
Students will be able to:
- Identify current trends in technologies and the connected enterprise.
- Identify the importance of data management in automated environments.

(ENG) Tema 2: SCADA systems

Description:
2.1 Supervisory control. Monitoring, alarms and fault detection.
2.2 Modules and functionality of SCADA systems.
2.3 Architecture: Server/client, virtual server.
2.4 Programming with Scripts.
2.5. Design of SCADA applications.
2.6. OPC communications.

Related activities:
- Written exam
- Exercises
- Report
- Practice Laboratory

Specific objectives:
Students will be able to:
- Apply a SCADA solution in automation systems.
(ENG) Tema 3: Communications Systems

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Introduction to Communication Systems.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>3.2. Digital Communications.</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>3.3. Computers networks topology.</td>
<td></td>
</tr>
<tr>
<td>3.4. Reference models. OSI, TCP/IP.</td>
<td></td>
</tr>
<tr>
<td>3.5. OPC-UA and MQTT architecture and protocol.</td>
<td></td>
</tr>
<tr>
<td>3.6. 5G and Internet of things.</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:	

- Autonomous study	
- Exercises	
- Practice Laboratory	

Specific objectives:	

Student will be able to:	
Classify and modelling of communications systems.	

(ENG) Tema 4: Industrial networks

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Process networks functionalities.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>4.2 Field bus. Device Net. Modbus.</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>4.3. Serial communications.</td>
<td></td>
</tr>
<tr>
<td>4.4. Ethernet/IP.</td>
<td></td>
</tr>
<tr>
<td>4.5. Programmable Logic Controllers networks.</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:	

- Examen	
- Exercises	
- Practice laboratory	

Specific objectives:	

Students will be able to:	
Configure LAN networks and field buses in the A5.4 Laboratory.	
Planning of activities

AD: Connected Industry

<table>
<thead>
<tr>
<th>Hours: 57h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 21h</td>
</tr>
<tr>
<td>Self study: 36h</td>
</tr>
</tbody>
</table>

Description:
The skill in this subject is search of Information resources. Following examples and technical study cases, the students will be able to search information about the connected enterprise (industry 4.0).

Support materials:
Papers in technical journals.

Descriptions of the assignments due and their relation to the assessment:
Month assessment and deadline (report) at the end of the semester.

Specific objectives:
Understand the new industrial paradigm.
Industrial study case analysis.
Writing a polite technical report in automation.

Qualification system

First exam: 30%
Second exam: 25%
Practice Lab: 25%
Other controls AD: 20%

(ENG) **Tema 5: Practices of Laboratory**

<table>
<thead>
<tr>
<th>Learning time: 45h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 15h</td>
</tr>
<tr>
<td>Self study: 30h</td>
</tr>
</tbody>
</table>

Description:
5.1. Design and programming SCADA applications.
5.2. Communications DDE SCADA with Emulated PLC.
5.3. PLC network with Ethernet over an assembly academic system.
5.4. OPC SCADA-PLC communications.
5.5. SCADA communications with IoT Platforms.

Related activities:
- Exercises
- Searching for data sheets
- Laboratory practices

Specific objectives:
Students will be able to:
acquire skills in advanced automation systems: PLC programming and configuration, communication protocols, SCADA application design.
The evaluation method of this course meets the current academic regulations to be qualified: NO REVALUABLE.

Bibliography

Basic:

Complementary:

Others resources:
- Teaching material in Virtual Campus.
- Teaching help support (Wonderware, Rockwell Automation, SMC),