820230 - TCEIA - Control Techniques

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6 Teaching languages: Spanish

Teaching staff
Coordinator: JOSÉ MARÍA HUERTA SÁNCHEZ
Others: Primer quadrimestre:
JOSÉ MARÍA HUERTA SÁNCHEZ - T11, T12, T13, T14

Prior skills
Automatic regulation

Requirements
REGULACIÓ AUTOMÀTICA - Prerequisite

Degree competences to which the subject contributes
Specific:
CEEIA-26. Understand automatic regulation and control techniques and their application to industrial automation.
Transversal:
1. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology
The methodologies used are:
Theoretical sessions (20%), individual working problems (10%) and team-working in laboratory sessions (10%).

Learning objectives of the subject
1. To know and apply the frequencial methods in order to determine the stability and to design compensators.
2. To present the tools for modeling and analysis of discrete time systems.
3. To present methods for design of discrete time systems.
4. To show the possibilities and limitations of computers in the control algorithms implementation.
Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45h</td>
<td>0h</td>
<td>15h</td>
<td>0h</td>
<td>90h</td>
<td>150h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>1. Stability in frequency domain of continuous time systems.</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 7h 30m</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 2h 30m</td>
</tr>
<tr>
<td></td>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:
To know all the graphical methods concerned with frequencial response, in order to apply the general stability criterion.

Related activities:
Problem solving sessions.

Specific objectives:

<table>
<thead>
<tr>
<th>2. Design and compensation of control systems by frecuencial methods.</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:
Design of lead compensators and lag compensators using frecuencials methods.

Related activities:
Problem solving sessions.

Specific objectives:
To apply the lag and lead compensation technics.
To know the advantages and drawbacks of this compensation technics.
3. Introduction to digital control of dynamic systems. **Learning time:** 10h
- Theory classes: 3h
- Laboratory classes: 1h
- Self study: 6h

Description:
To describe the functions and characteristics of the elements and signals belonging to a computer controlled system.

Related activities:
Problem solving sessions.

Specific objectives:
To consider the effect of the presence of sampled data signals in the control loop and to know the problems associated with the choice of the sampling period, and Shannon's theorem.

4. The z-transform. **Learning time:** 15h
- Theory classes: 4h 30m
- Laboratory classes: 1h 30m
- Self study: 9h

Description:
Introduction to the z-transform in order to represent signals of sampled data systems.

5. Stability of sampled data systems. **Learning time:** 10h
- Theory classes: 3h
- Laboratory classes: 1h
- Self study: 6h

Description:
Study of the stability of sampled data systems.

Specific objectives:

6. Design of digital controllers. **Learning time:** 30h
- Theory classes: 9h
- Laboratory classes: 3h
- Self study: 18h

Specific objectives:
7. State model of discrete systems.

Learning time: 20h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 12h

Description:
To obtain models of discrete time systems in the state space.

Specific objectives:
State model of discrete systems. Discrete time state equation solution. Discretization of the state equation of continuous time systems.

8. State space control.

Learning time: 30h
- Theory classes: 9h
- Laboratory classes: 3h
- Self study: 18h

Specific objectives:

Qualification system

Partial controls (2): 30%
Last control: 40%
Practices: 15%
Exercises / problems: 15%
Other tests / projects: 35%
Generic competition, self-directed learning, represents 15% of the global evaluation.

The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-2018-06-13.pdf)
Bibliography

Basic:

Complementary:
