820423 - ELAS - Elasticity

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6

Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: DANIEL DI CAPUA

Others: Primer quadrimestre:
JOSEP MARIA CARBONELL PUIGBO - T11, T12
GABRIEL CONESA BUSTO - M11, M12, M13, M14
DANIEL DI CAPUA - M11, M12, M13, M14
JUAN DANIEL GARCÍA RUEDA - T11, T12
FERNANDO GABRIEL RASTELLINI CANELA - T11, T12

Segon quadrimestre:
GABRIEL CONESA BUSTO - M11, M12, M13, M14, M15, M16
DANIEL DI CAPUA - M11, M12, M13, M14, M15, M16
JUAN DANIEL GARCÍA RUEDA - T11, T12, T13, T14
DAVID SÁNCHEZ MOLINA - T11, T12, T13, T14

Opening hours

Timetable: Office hours to be arranged with the lecturers of the course.

Requirements

SISTEMES MECÀNICS - Prerequisite

Degree competences to which the subject contributes

Specific:
5. Understand and apply the fundamentals of the elasticity and strength of materials to the behaviour of real solids.

Transversal:
3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

The course consists of 3 hours per week of classroom sessions that will be held in two sessions of 1 and 2 hours respectively. In these sessions theoretical classes and problems will be combined. Additionally, laboratory practices will be held 2 hours every two weeks.
The study of the mechanics of continuous media preceeds and establishes the principles and fundamental laws used after the resistance of materials. Consequently, the course aims to establish the scientific techniques required for the study of the strength characteristics of materials and for an understanding of the mechanisms of durable and solid mechanical kinematic response bases. It is intended that students acquire a knowledge of the stress state and strains that are created in solids when subjected to a given solicitation. An important academic aspect is that the student, at the end of the course, must distinguish the domains of elastic and plastic response of materials under different loading conditions, and be able to apply the corresponding quantitative theories to each domain to describe the response of solid mechanics analyzed.

Since the elastic and linear response is critical in engineering practice, an important part of the subject moves in the field of linear elasticity, reasoning on a theoretical model of elastic solid: mechanical prism, which we assume has the properties homogenety, continuity and isotropy.

General objectives of this subject in relation to students be considered:

1. Introduction to the basic concepts of continuum mechanics, with special emphasis on the mechanics of solids.
2. Acquisition of basic vocabulary while specific area of continuum mechanics.
3. Ability to read, interpret correctly and understand texts, figures and tables in technical literature related to the mechanics of solids.
4. Ability for effective and accurate oral or written expression, on matters within the scope of continuum mechanics.
5. Understanding the equations that describe and relate the states of stress and strain in the elastic and plastic domain response of solid mechanics.
6. To acquire knowledge and computing capacity in both domains: domain linear elastic and plastic range.
7. Ability to describe and use different rheological models.
8. Ability to associate the main criteria ruling resistant, prescribed in different technical codes, different types of materials and stress states.
9. Ability to handle basic finite element software.
10. Develop skills in experimental techniques and analysis of results.
11. To acquire knowledge of the basic literature and ability to perform literature searches related to the field of solid mechanics.
12. Knowledge of information sources, institutional and private, related to solid mechanics, strength of materials and structural analysis.
13. Ability for independent learning on matters within the field of solid mechanics, strength of materials and structures in Engineering.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

Topic 1: Introduction to Elasticity and Strength of Materials

<table>
<thead>
<tr>
<th>Learning time: 31h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Self study : 18h</td>
</tr>
</tbody>
</table>

Description:

Specific objectives:
Know and be able to describe the differences and similarities between the theory of elasticity and strength of materials. Know and be able to explain the concept of continuous medium and its potential in solving problems in solid mechanics. Know and be able to apply the notation and basic properties of tensor algebra.

Topic 2: Cinemàtica

<table>
<thead>
<tr>
<th>Learning time: 26h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 16h</td>
</tr>
</tbody>
</table>

Description:

Specific objectives:
Be able to explain the concepts and derive the equations of motion in solid mechanics. Know and be able to describe the concept of deformation. Knowing the different possibilities of measures deformations, their physical interpretations and properties.
Topic 3: Stresses

Learning time: 23h
Theory classes: 7h
Practical classes: 0h
Laboratory classes: 2h
Guided activities: 0h
Self study: 14h

Description:

Specific objectives:
Know and be able to describe the concept of stress. Knowing the different stress measurements, their physical interpretations and properties. Recognize the interpretation advantages offered by the geometric description of the stress state through the Mohr Circle. Be able to express the stress state using the plane representation of Mohr Circle. Being able to calculate representative values of the stress state from its graphical representation.

Topic 4: Conservation and balance equations

Learning time: 23h
Theory classes: 7h
Practical classes: 0h
Laboratory classes: 2h
Self study: 14h

Description:

Specific objectives:
Learn the foundational principles of solid mechanics.
Learning time:

Learning time: 20h
Theory classes: 6h
Practical classes: 0h
Laboratory classes: 2h
Self study: 12h

Description:

Specific objectives:

Ability to deduce the fundamental relationship between the state of tension and the state of deformation in the linear elasticity theory. Analyze and know how to apply several simplifications of the linear elasticity theory: isotropic materials, plane stress and plane strain states. Being able to set the elastic problem. Demonstrate the need of a plasticity theory. Ability to derive the fundamental equations that relate the state of stress and strain state in the theory of plasticity. Know different rheological models. Ability to associate the main failure criteria, prescribed in different technical codes, to different materials types and stress states.

Learning time:

Learning time: 27h
Theory classes: 8h
Practical classes: 0h
Laboratory classes: 3h
Guided activities: 0h
Self study: 16h

Description:

Specific objectives:

Knowing the different expressions of the internal potential. Ability to set the differential equations of government of the mechanical problem in a comprehensive way, so that these equations are presented in a useful format for their numerical resolution by the finite element method.
820423 - ELAS - Elasticity

Qualification system

Mid-term exams: 25%
Exercises / problems: 25%
Group work: 10%
Laboratory Practices: 10%
Final Exam: 30%

The subject has not re-evaluation test.

Regulations for carrying out activities

If any of the ongoing evaluation activities are not performed in the scheduled period a zero mark will be assigned to that activity.

In case of failure to attend an assessment test due to a justifiable reason, the student must notify the professor in charge of the course BEFORE THE TEST and hand in an official certificate excusing his absence. In this case, the student will be allowed to take the test another day, ALWAYS BEFORE THE FOLLOWING ASSESSMENT.

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink
http://www.gidhome.com/
Resource