820444 - TCIIM - Building Technology and Industrial Facilities

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff

Coordinator: JUAN DANIEL GARCÍA RUEDA
Others: Primer quadrimestre:
 JUAN DANIEL GARCÍA RUEDA - T11

Prior skills

Use of CAD programs.
Use of office applications (Word and Excel).

Requirements

Fluid Mechanics.
Electrical Systems.

Degree competences to which the subject contributes

Transversal:

1. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the
time needed to complete each task, including personal contributions and expanding on the recommended information
sources.
2. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to
favor communication, task assignment and cohesion.
3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an
academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

Methodology applied consists in theoretical exposition and problem solving in large groups, and use of tools for problem
solving in the field of Building Constructions and Installations at Practice groups.

Using knowledges and tools acquired during the sessions will be taken as the basis for the Non-presential work. (40%).

Directed activities related to each item will establish guidelines for non-presential work.

Learning objectives of the subject

1. Acquire knowledge in the field of engineering projects aimed at buildings and industrial facilities.
2. Acquire ability to manage specifications, regulations and mandatory standards.
3. Representing simple industrial processes.
4. Distinguish constraints involved in industrial buildings.
5 - Designing industrial buildings and establishing location of industrial plants.
6 - Analyze and design elements of basic industrial facilities.
7 - Establish construction systems involved in industrial building.
8 - Design Implementation alternatives.
9 - Distinguish between different instruments of urban planning and its functions.
10 - Select the most appropriate structural system in industrial building.
11 - Select the most appropriate building systems in industrial building.
12 - Analyze and assess the environmental impact of proposed solutions.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>30h</td>
<td>0h</td>
<td>30h</td>
<td>0h</td>
<td>90h</td>
</tr>
<tr>
<td></td>
<td>20.00%</td>
<td>0.00%</td>
<td>20.00%</td>
<td>0.00%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

Total learning time: 150h
Hours large group: 30h (20.00%)
Hours medium group: 0h (0.00%)
Hours small group: 30h (20.00%)
Guided activities: 0h (0.00%)
Self study: 90h (60.00%)
820444 - TCIIM - Building Technology and Industrial Facilities

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to industrial building and facilities projects.</td>
<td>6h</td>
<td>Description: Introduction to projects redaction. Parts project. Minimum content. Applying rules. Appendices and complementary documentation. Guidelines for quality management in projects.</td>
</tr>
<tr>
<td>3. Relation between architecture and industry.</td>
<td>9h</td>
<td>Description: Function and objectives of architecture. General Introduction to architectural design. Industrial architecture: characteristics and solutions. Type structural in industrial building: evolution since classic times to nowadays. Sizing of spaces: modular construction.</td>
</tr>
</tbody>
</table>

Learning time:

- **Theory classes:**
- **Self study:**

Description:

5. Plant layout: Systematic Layout Planning

Learning time: 7h
- Theory classes: 2h
- Self study: 5h

Description:

6. Auxiliary services in manufacturing processes

Learning time: 28h
- Theory classes: 9h
- Practical classes: 5h
- Self study: 14h

Description:

7. Essential characteristics in industrial building.

Learning time: 16h
- Theory classes: 4h
- Practical classes: 2h
- Self study: 10h

Description:

8. Basics of industrial location.

Learning time: 7h
- Theory classes: 2h
- Self study: 5h

Description:
9. Introduction to soil planning

Learning time: 7h
Theory classes: 2h
Self study: 5h

Description:

10. Introduction to industrial soil planning.

Learning time: 7h
Theory classes: 2h
Self study: 5h

Description:

11. Systems and subsystems in building.

Learning time: 29h
Theory classes: 10h
Practical classes: 4h
Self study: 15h

Description:

12. Environment and industry.

Learning time: 15h
Theory classes: 4h
Practical classes: 2h
Self study: 9h

Description:
Qualification system

Non-presential work 40%
Final exam 35%
Practices 15%
Generic competencies 10%

Regulations for carrying out activities

To carry out the exams is allowed the use of any documentation.

Bibliography

Basic:

Others resources:

Information downloaded from ATENEA