Course guides
820465 - ESU - Engineering Surfaces

Unit in charge: Barcelona East School of Engineering
Teaching unit: 702 - CEM - Department of Materials Science and Engineering.

Degree: BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Optional subject).
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Optional subject).

Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: MIQUEL MORALES COMAS
Others: Segon quadrimestre: GEMMA FARGAS RIBAS - M10
MIGUEL MORALES COMAS - M10

PRIOR SKILLS

Basic knowledge of materials science and chemistry.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

Face-to-face expository classes (Theory)
Face-to-face directed classes (Problem solving)
Cooperative learning

LEARNING OBJECTIVES OF THE SUBJECT

1- Get to Know analytical techniques and characterization of the surface.
2- Gaining basic knowledge of surface modification techniques.
3- Learning to select surface modification techniques based on applications.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>60,0</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

<table>
<thead>
<tr>
<th>(ENG) Chapter 1. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>1.1. Surface engineering goals</td>
</tr>
<tr>
<td>1.2. Surface description</td>
</tr>
<tr>
<td>1.3. Surface phenomena: corrosión, wear and fatigue</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
<tr>
<td>Describe the surface phenomena that limit the useful life of materials and understand the ways that engineering surfaces offers to control and reduce their effects.</td>
</tr>
<tr>
<td>Related activities:</td>
</tr>
<tr>
<td>Presentation of case studies</td>
</tr>
<tr>
<td>Full-or-part-time: 5h</td>
</tr>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ENG) Chapter 2. Surface characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>2.1. Microscopy techniques</td>
</tr>
<tr>
<td>2.2. Spectroscopy techniques</td>
</tr>
<tr>
<td>2.3. Measurements and tests</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
<tr>
<td>Describe the surface characterization techniques at different scales to determine: microstructure, chemical composition and mechanical properties</td>
</tr>
<tr>
<td>Full-or-part-time: 18h</td>
</tr>
<tr>
<td>Theory classes: 7h</td>
</tr>
<tr>
<td>Self study: 11h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(ENG) Chapter 3. Surface cleaning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>3.1 Degreasing processes</td>
</tr>
<tr>
<td>3.2 Removal of organic deposits</td>
</tr>
<tr>
<td>3.3 Removal of protective layers</td>
</tr>
<tr>
<td>3.4 Removal of corrosión and oxidation products</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
<tr>
<td>To understand the importance of cleaning processes prior to surface modification. Establish a criterion to select the appropriate cleaning process depending on the initial state of the surface and/or further treatment and/or application.</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Self study: 9h</td>
</tr>
</tbody>
</table>
(ENG) Chapter 4. Surface modification without changing the material chemically

Description:
4.1. Thermal treatments: Quenching and annealing
4.2. Mechanical treatments: Shot peening

Specific objectives:
Understand basic theory of these processes
Describe the stages on which these processes are carried out at industrial level
Understand their effect on the surface regarding microstructure and mechanical properties
Know under which work conditions these processes are useful

Related activities:
Presentation of case studies

Full-or-part-time: 12h
Theory classes: 7h
Self study: 5h

(ENG) Chapter 5. Surface modification by altering surface chemistry

Description:
5.1. Carburization
5.2. Nitruration
5.3. Passivation
5.4. Phosphatation
5.5. Ionic implantation

Specific objectives:
1-Understand basic theory of these processes
2-Describe the stages on which these processes are carried out at industrial level
3-Understand their effect on the surface regarding microstructure and mechanical properties
4-Know under which work conditions these processes are useful

Related activities:
Presentation of case studies

Full-or-part-time: 21h
Theory classes: 12h
Self study: 9h

(ENG) Chapter 6. Surface modification by adding a new material onto the surface (coating). Conventional techniques

Description:
6.1. Introduction to coatings
6.2. Electroplating
6.3. Electroless
6.4. Galvanized

Related activities:
Presentation of case studies

Full-or-part-time: 21h
Theory classes: 11h
Self study: 10h
Chapter 7. Surface modification by adding a new material onto the surface (coating). Advanced techniques

Description:
- 7.1. Thermal spray
- 7.2. Chemical vapor deposition
- 7.3. Physical vapor deposition

Related activities:
Presentation of case studies

Full-or-part-time: 16h
- Theory classes: 7h
- Self study: 9h

Chapter 8. Surface modification by adding a new material onto the surface (coating): Organic coatings

Description:
- 8.1. Technology and functions
- 8.2. Types and selection criteria
- 8.3. Application processes
- 8.4. Pathological processes

Related activities:
Presentation of case studies

Full-or-part-time: 16h
- Theory classes: 6h
- Self study: 10h

Chapter 9. Nanotechnology in surfaces

Description:
- 9.1. Pulsed laser deposition
- 9.2. Lithography

Full-or-part-time: 7h
- Theory classes: 2h
- Self study: 5h

GRADING SYSTEM

- First partial test: 15%
- Second partial test: 25%
- Third partial test: 35%
- Work: 15%
- Laboratory: 10%

In this subject a reassessment test will be scheduled

EXAMINATION RULES.

Autonomous learning evaluation: report and oral presentation
BIBLIOGRAPHY

Basic:

Complementary: