Guía docente
300090 - AE_MUEA - Aviación y Medio Ambiente

Unidad responsable: Escuela de Ingeniería de Telecomunicación y Aeroespacial de Castelldefels
Unidad que imparte: 748 - FIS - Departamento de Física.
Curso: 2021
Créditos ECTS: 5.0
Idiomas: Inglés

PROFESORADO
Profesorado responsable: Jovana Kuljanin
Otros: Raúl Sáez García

CAPACIDADES PREVIAS
English (and professional/technical English). Basic and required courses related to calculus and statistics. Knowledge related to international agreements and organizations in civil aviation and air transport industry in general. Previous concepts include knowledge of air traffic management, air transport infrastructure given in any bachelor's degree in aerospace engineering and reviewed in previous subjects of this Master's degree. Familiarity with knowledge of programming languages is required, specially Python and/or Matlab and C++.

REQUISITOS
Concepts seen in 220309 - Transport Aeri i Sistemes de Navegació

METODOLOGÍAS DOCENTES
The course combines the following teaching methodologies:
- Theory classes.
- Autonomous learning: students will study using self-learning material.
- Cooperative learning: students will form small groups (2-4 people) to fulfill some of the activities of the course.
- Project based learning: students will build a small team project (3-4 people).
Directed learning hours will consist in exercises and practical examples, after the theory classes in which the professor exposes the content of the subject. With the directed learning hours, the students will be motivated to participate actively in their education and to complete the knowledge acquired during theory classes, usually with the help of computers.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA
This course addresses environmental challenges such as greenhouses gas emissions and noise in a broader context of sustainable aviation growth. Different types of strategies to mitigate the adverse effects of aviation operations will be examined with special emphasis on the novelty in ATM procedures and operations. Some optimization framework used in the field will be proposed, as well as different ATM performance assessment frameworks. At the end of the course, the student will be able to:
- understand the general concept and trends in the aviation and its impact on environment;
- understand different types of externalities generated by aviation activities;
- identify and quantify different sources of fuel (CO2) inefficiency by applying different sets of KPAs/KPIs;
- model and validate how novel air traffic management (ATM) procedures may lead to CO2 reduction and sustainable growth;
HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Horas</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horas grupo mediano</td>
<td>15,0</td>
<td>12.00</td>
</tr>
<tr>
<td>Horas grupo grande</td>
<td>30,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Horas aprendizaje autónomo</td>
<td>80,0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Dedicación total: 125 h

CONTENIDOS

Introduction to Sustainability

Descripción:
- Introduction the general concept of sustainability, important dates and documents related to sustainability.
- The concept of suitability in transport systems (performance indicators, classification of model for sustainability assessment, data required, composite sustainability index (CSI))
- Air transport development and its impact on environment
- National/International Aviation Organization dealing with "greener" air transport

Dedicación: 13h
Grupo grande/Teoría: 4h
Grupo pequeño/Laboratorio: 3h
Aprendizaje autónomo: 6h

External negative effects of aviation: CO2 emissions, NOx emissions and noise.

Descripción:
Overview, description and literature review on:
- Aviation greenhouses gas emissions
- CO2 emissions (calculation, trends, methodologies, policy, market-based measures)
- NOx emissions (calculation, trends, methodologies)
- Different measures towards sustainable aviation (Sustainable Alternative Fuel (SAF), carbon market-based measures, regulations, advancements in aircraft design and technology, modernization of ATM system)
- Noise (calculation, noise charts, IMPACT software, airport noise charges)

Dedicación: 29h
Grupo grande/Teoría: 9h
Grupo pequeño/Laboratorio: 4h
Aprendizaje autónomo: 16h

Project I: Post-assessment methodology for measuring fuel (CO2) inefficiency at ECAC area

Descripción:
Working in groups, the students will analyse fuel inefficiency (CO2 emissions) from different aspects from a list of topics proposed by the lecturer, which will cover different baseline scenarios and objective function specifications. The students will perform a multivariate statistical analysis to address the particular challenge. A report will be delivered and a presentation summarizing the achievement will be given in front of the rest of students.

Dedicación: 31h
Grupo grande/Teoría: 3h
Actividades dirigidas: 8h
Aprendizaje autónomo: 20h
Project II: Advancement in ATM operations and its effect on CO2 reduction

Descripción:
In order to explore the enhancements in ATM procedures and their implications to CO2 emissions and fuel consumptions, the students will develop an enhanced optimization framework for fully automated scheduling of energy-efficient continuous-descent arrivals with guaranteed separation in the Terminal Maneuvering Area (TMA). The algorithm will be validated on a small-case study. A report will be delivered and a presentation summarizing the achievement will be given in front of the rest of students.

Dedicación: 52h
Grupo grande/Teoría: 3h
Actividades dirigidas: 11h
Aprendizaje autónomo: 38h

SISTEMA DE CALIFICACIÓN

Participation in class and exercises: 10%
Individual exams and tests: 35%
Projects and presentations: 55%

BIBLIOGRAFÍA

Básica:
- EUROCONTROL. "Flying the 'perfect green flight': How can we make every journey as environmentally friendly as possible?". EUROCONTROL - Aviation Intelligence Unit).
- Fankhauser et al., "The meaning of net zero and how to get it right". Nature Climate Change.