13963 - ORSA - Optical Remote Sensing I: Active

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2015
Degree: ERASMUS MUNDUS MASTER'S DEGREE IN RESEARCH ON INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN PHOTONICS (Syllabus 2009). (Teaching unit Optional)
ERASMUS MUNDUS MASTER'S DEGREE IN PHOTONICS ENGINEERING, NANOPHOTONICS AND BIOPHOTONICS (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Prior skills

Requirements

Teaching methodology
Oral-exposition classes combined with problems and/or computer-based classes. Review of journal papers or others.

Learning objectives of the subject
To introduce the main techniques, systems and subsystems on laser-radar (LIDAR) remote sensing. The course presents the grounds of the technological, physical, and signal-processing keys involved as well as the applications of these remote sensing systems. Present-day fields of application comprise the detection and monitoring of chemical species, atmospheric observation, pollution concentration and physical variables, and others, in the industrial field.
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Elastic LIDAR Systems</td>
<td>1. Architecture and receiver chain [(optical and electro-optical sub-systems (lasers, detectors), signal acquisition sub-systems (analog and photon counting)]. 2. Examples of real systems 3. Applications and satellite/space missions. 4. Pseudo-random systems.</td>
<td>Theory classes: 3h</td>
</tr>
</tbody>
</table>
| **3. LIDAR Link-Budget / Project coaching I** | 1. Receiving chain. 2. Assessment of power levels in the chain. 3. Generalised signal-to-noise ratio. 4. Lidar range estimation and simulation. 5. Problem discussion I | Theory classes: 1h 30m
Practical classes: 2h 30m |
| **4. LIDAR Inversion Algorithms** | 1. Inversion of opto-atmospheric parameters. 2. Examples | Theory classes: 1h
Practical classes: 1h |
| **5. Raman LIDAR Systems / Project coaching II** | 1. Raman lidar (temperature and gas detection). 2. Elastic-Raman lidar systems. 3. Problem discussion II | Theory classes: 4h 30m
Practical classes: 1h 30m |
6. Wind LIDAR Systems

Learning time: 4h
Theory classes: 3h 30m
Practical classes: 0h 30m

Description:

7. Other Laser-Radar Systems

Learning time: 2h
Theory classes: 1h 30m
Practical classes: 0h 30m

Description:
1. DIAL (Differential Absorption Lidar, trace gas detection). 2. Other systems (fluorescence, active vision, etc.)

8. Exam

Learning time: 2h
Theory classes: 2h

9. Project exposition

Learning time: 2h
Theory classes: 2h

Qualification system

50 % final exam (multiple answer test), 50 % Guided research work (computer based).

Regulations for carrying out activities

A minimum attendance of 80% is required. Exam duration: 2h. Guided research work: Oral exposition or interview (depending on the number of students).

Bibliography

- 6. Wind LIDAR Systems
- 7. Other Laser-Radar Systems
- 8. Exam
- 9. Project exposition