Course guide
19388 - AW - Aviation Weather

Unit in charge: Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit: 748 - FIS - Department of Physics.
Degree: MASTER'S DEGREE IN AEROSPACE SCIENCE AND TECHNOLOGY (Syllabus 2015). (Optional subject).
MASTER'S DEGREE IN AEROSPACE SCIENCE AND TECHNOLOGY (Syllabus 2021). (Optional subject).

Academic year: 2022 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: Defined at the EETAC web page

Others:

PRIOR SKILLS

To be able to operate with the concepts and laws of mechanics, thermodynamics and fluid mechanics.

To be able to operate in differential and integral calculus of vector fields.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE4 MAST. (ENG) CE4: Aplicar el método científico para el estudio de la fenomenología particular del ambiente aeroespacial.

Transversal:
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Basic:
CB6. (ENG) CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
CB10. (ENG) CB10 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
CB7. (ENG) CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
CB8. (ENG) CB8 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
CB9. (ENG) CB9 - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

TEACHING METHODOLOGY

The contents of the course will be explained by theoretical lessons combining blackboard and slides and practical exercises.
LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student should be able to:
- Identify the different layers of the atmosphere and their main characteristics, the atmospheric composition and atmospheric phenomena in the troposphere.
- To define the fundamental physical variables: pressure, humidity, density, and temperature that drives atmospheric dynamics.
- Understand the thermal equilibrium, the radiative balance and stability of the atmosphere and apply them to flying conditions.
- Understand the origin of the horizontal and vertical movements of the air and how they affect to aviation.
- Understand the importance of water vapour in the atmosphere, its measurement, phase changes, and the formation of fog and clouds, and its influence on aviation.
- Understand the physics of clouds, and to be able to identify the 10 basic types, and associated weather phenomena.
- Know how precipitation occurs and how thunderstorms are formed and develop.
- Know the main hazards affecting aviation: CAT, icing, visibility, turbulence and how to forecast and avoid them.
- Understand the basics of general circulation and synoptic meteorology.
- Be able to understand and explain METARs, SIGMETs, significant weather charts.
- To understand the meteorological aspects of flight planning.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45.0</td>
<td>36.00</td>
</tr>
<tr>
<td>Self study</td>
<td>80.0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Introduction

Description:
- Presentation and previous concepts. Meteorological scales. Importance of meteorology and climatology in aviation.
- Definition, structure and composition of the atmosphere.
- Main variables used to study the atmosphere: temperature, pressure, density, wind speed and direction. Units of measurement.
- International Standard Atmosphere. The hydrostatic approximation.

Full-or-part-time: 11h

Theory classes: 3h
Self study : 8h

Heat, stability and atmospheric dynamics

Description:
- Turbulence and winds in the atmosphere. Different types of wind depending on their horizontal scale: micro and mesoscale systems.
- Altimeter settings on a plane or airport. Problems and relation with atmospheric pressure and temperature.
- Main isobaric features: cyclones, anticyclone, ridge, trough
- Wind shear. CATs

Full-or-part-time: 32h

Theory classes: 10h
Guided activities: 2h
Self study : 20h
Water in the atmosphere: humidity, clouds and precipitation

Description:
- Water vapor in the atmosphere: pressure, condensation. Definitions of humidity.
- Stability of the saturated air. Cloud formation.
- Clouds classification: description, observation keys, and influence to the flight conditions. Cloud base and ceiling. Main weather phenomena associated to clouds. Condensation trails.
- Thunderstorms.

Full-or-part-time: 24h
Theory classes: 6h
Guided activities: 2h
Self study: 16h

General circulation and synoptic meteorology

Description:
- Major atmospheric circulation features: cells, belts, jet stream, waves of Rossby.
- Geostrophic wind, gradient wind.
- Air masses: origin and effect on the weather.
- Fronts: types, associated precipitation and flight conditions.

Full-or-part-time: 18h
Theory classes: 4h
Guided activities: 2h
Self study: 12h

Meteorological information for aviation

Description:
- Message and local reports: METAR, SPECI, TAF, SIGMET.
- Significant weather maps.
- Flight plans.
- Weather forecast from numerical models.

Full-or-part-time: 19h
Theory classes: 4h
Guided activities: 3h
Self study: 12h
Meteorological hazards for aviation

Description:
- Visibility. Causes of atmospheric obscurity
- Differentiate between the different types of visibility: horizontal visibility, slant visibility, prevailing visibility, RVR
- Icing: Definition, formation and types of icing.
- Significance of both hazards to aviation.
- Turbulence at low levels. Definition. Orographic waves, rotors, wind shear.
- CAT
- Thunderstorms and severe weather.
- Relation of meteorological hazards on fly phases.
- Climate change and aviation: influence and impacts of climate change on aviation.

Full-or-part-time: 21h
Theory classes: 8h
Guided activities: 1h
Self study : 12h

GRADING SYSTEM
It will be defined in the EETAC web page

EXAMINATION RULES.
All the activities to be evaluated are compulsory. Any exam or deliverable not presented on time will be evaluated with a zero mark.
All the evaluations are individual

BIBLIOGRAPHY

Basic:

Complementary: