Prior skills

The MESIO UPC-UB includes two compulsory subjects: Advanced Statistical Inference and Foundations of Statistical Inference. Advanced Statistical Inference is mandatory for all graduate students in statistics or mathematics (path 1) and Foundations of Statistical Inference is compulsory for all students from other degrees (path 2). Students from path 2 can choose Advanced Statistical Inference as optional. Students from path 1 cannot choose Foundations of Statistical Inference.

This course is mandatory for all graduate students in statistics or mathematics.

Statistical knowledge required of an undergraduate-level in statistics or mathematics.
Basic mathematical analysis skills required: integration of functions of one or two variables, derivation, optimization of a function of one or two variables.
* Basic probability skills required: the most common parametric distributions, properties of a normal distribution, the law of large numbers and the central limit theorem.
* Basic statistical inference skills required: using the likelihood function for simple random sampling (independent identically distributed data), inference in the case of normality, estimation of maximum likelihood for parametric models with only one parameter and simple random sampling.

Chapters 1 through 5 from book “Statistical Inference” by Casella and Berger (2001).

Degree competences to which the subject contributes

Specific:
3. CE-1. Ability to design and manage the collection of information and coding, handling, storing and processing it.
4. CE-4. Ability to use different inference procedures to answer questions, identifying the properties of different estimation methods and their advantages and disadvantages, tailored to a specific situation and a specific context.
5. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem.
6. CE-9. Ability to implement statistical and operations research algorithms.

Transversal:
2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data
and information in the chosen area of specialisation and critically assessing the results obtained.
200604 - IEA - Advanced Statistical Inference

Teaching methodology

Conceptual sessions of 1.5 hours
The sessions present the subject material. The teacher might use the computer to present the contents. Ideas and concepts are emphasized and a detailed look is given at those proofs with an added pedagogical value.

- Chapters 1 to 5 of Gomez and Delicado will be followed, these notes can be downloaded from the Intranet.
- Supplementary materials will be provided for specific topics.

Problem sessions of 1.5 hours.

- Problems will be posted on the intranet and at the next class will be discussed.
- Students must come to class having thought about the problems and having solved them, if possible.
- The professor will solve the problems and discuss with students their questions or other solutions.
- The solution of these problems will be posted after the corresponding session on the intranet.
- At the end of some sessions between 4 and 6 R problems and exercises (see below) will be proposed
 - These problems must be solved individually and delivered within the period specified in class (and in the planning schedule).
 - The problems will be corrected and evaluated individually.
 - The corresponding scores will weigh 20% in the final grade.

Statistical Laboratory

R programs will serve to illustrate concepts, to complement the theoretical developments showing how statistical computing is an important tool in statistical inference.
- Some exercises will be proposed in line with those discussed in class, to strengthen the concepts.

- The exercises will be:
 - Resolution of minor problems
 - Case studies.

The corresponding scores will weigh 10% in the final grade.

Questionnaires

- At the end of each chapter, a multiple choice questionnaire will be given. Students will solve this in class working in
The Advanced Statistical Inference course provides a theoretical basis for the fundamentals of Statistics. Its main objective is to train students to think in statistical terms in order to conduct a thorough professional habit. Also intended as a formative seed for the consolidation of young researchers in this area of science and technology while equipping students with the resources to continue their training and making them capable to read papers published in journals of statistics.

After completing the course the student:

* has learnt about the different principles governing the reduction of a dataset and the different philosophies that may arise to solve a problem.
* knows the principle of sufficiency and likelihood and know how to distinguish between them.
* understands that the frequentist and Bayesian philosophy are two ways to approach a problem, not necessarily conflicting and sometimes complementary.
* be able to construct estimates (point or interval) using different methodologies.
* know to write down the likelihood function in different situations and learn different techniques to maximize it.
* be familiar with modern resampling techniques and view them as an approximation, either formal or well suited for use in situations where direct calculations are too complex or not available.
* will have acquired formal knowledge of the properties of estimators and hypothesis tests so that will be able to choose the best of inferential methods in each case.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
1. Introduction

Degree competences to which the content contributes:

Description:
- What is statistical inference. Philosophies of inference.

2. Point estimate 1: Methods to find estimators

Degree competences to which the content contributes:

Description:
- The empirical distribution function. Glivenko-Cantelli Theorem.
- Likelihood Principle and the likelihood function.
- The maximum likelihood estimators. Invariance property.

3. Point estimate 2: Evaluation of estimates

Degree competences to which the content contributes:

Description:
- Mean squared error, bias, relative efficiency.
- Sufficient Statistics and the principle of sufficiency.
- Asymptotic theory for maximum likelihood estimator.

4. Hypothesis Testing

Degree competences to which the content contributes:
Each topic is assessed by individual take-home problems and take home exercises with R ("PRA") and a questionnaire (Q) type test which is discussed in small groups in class time. The final examination (EF) consists of resolution of problems. The final grade for the course (N) is obtained from the grades of the exercises (PRA), quizzes (Q) and final exam (EF) following the formula:

\[N = \max(\text{EF}, 0.3 \times \text{PRA} + 0.2 \times Q + 0.5 \times \text{EF}) \]
Bibliography

Basic:

Complementary: