200628 - DAIC - Advanced Experimental Design in Clinical Research

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 1004 - UB - (ENG) Universitat de Barcelona
Academic year: 2017
Degree: MASTER’S DEGREE IN STATISTICS AND OPERATIONS RESEARCH (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Spanish

Teaching staff
Coordinator: JOSEP LLUÍS CARRASCO JORDAN
Others: Segon quadrimestre:
MIQUEL CALVO LLORCA - A
JOSEP LLUÍS CARRASCO JORDAN - A
ANTONIO MONLEON GETINO - A

Requirements
- It is necessary that students have basic knowledge of R. In the following link the materials from a course to introduction to R are available: http://www.ub.edu/stat/docencia/EADB/Curso%20basico%20de%20R.htm
- It is recommended that students have taken a course in Design of Experiments or have basic knowledge on this subject. In particular it is recommended that students know the methodology outlined in chapters 12 and 13 included in Montgomery, DC (2001). Design and analysis of experiments, 5th edition. John Wiley & sons.

Degree competences to which the subject contributes

Specific:
5. CE-1. Ability to design and manage the collection of information and coding, handling, storing and processing it.
6. CE-2. Ability to master the proper terminology in a field that is necessary to apply statistical or operations research models and methods to solve real problems.
7. CE-3. Ability to formulate, analyze and validate models applicable to practical problems. Ability to select the method and / or statistical or operations research technique more appropriate to apply this model to the situation or problem.
8. CE-4. Ability to use different inference procedures to answer questions, identifying the properties of different estimation methods and their advantages and disadvantages, tailored to a specific situation and a specific context.
9. CE-5. Ability to formulate and solve real problems of decision-making in different application areas being able to choose the statistical method and the optimization algorithm more suitable in every occasion.
10. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem.
11. CE-7. Ability to understand statistical and operations research papers of an advanced level. Know the research procedures for both the production of new knowledge and its transmission.
12. CE-8. Ability to discuss the validity, scope and relevance of these solutions and be able to present and defend their conclusions.
13. CE-9. Ability to implement statistical and operations research algorithms.

Transversal:
1. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships
To face concrete situations, the student must know how to identify appropriate designs, properly carry out experimentation, and analyze results.

To obtain theoretical and practical knowledge of some critical designs in Biostatistics.

To know the regulatory requirements for the approval of generic drugs and formulations.

To know how to differentiate between a situation that requires an analysis of differences and one that requires an analysis of equivalence.

To provide the concepts and approaches for carrying out an analysis of bioequivalences and equivalence in general.

To provide the concepts and approaches for carrying out an analysis of concordance among measurements.

To know how to differentiate between an analysis of concordance and an analysis of association or parameter comparison.

To identify the sources of disagreement.

To provide the skills needed to discriminate among approaches depending on the type of data and objectives.

Learning objectives of the subject

The in-person lessons consist of sessions in the classroom where theoretical concepts are introduced with practical examples through slides available for students. Furthermore, the appropriate software to carry out analyses and procedures will also be introduced by solving real data examples.

Teaching methodology

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

BLOCK 1. HIERARCHICAL FACTOR MODELS, REPEATED MEASURES AND CROSS-OVER DESIGNS

Description:
1.1.1. Factor designs with random effects. Mixed effects designs.
1.1.2. Hierarchical designs with two and three factors. Bennett-Franklin algorithm.
1.1.3. Repeated measures designs. Sphericity concept and ANOVA table corrections.
1.1.4. Crossover design concept. 2x2 crossover design (AB/BA). Crossover design of superior order and its analysis.

Learning time: 31h 15m
Practical classes: 12h
Guided activities: 8h
Self study: 11h 15m

BLOCK 2. BIOEQUIVALENCE

Description:
2.1. Introduction
2.1.1. Bioavailability. The concept of bioequivalence between drugs. Regulatory norms.
2.1.2. TOST. The principle of confidence intervals inclusion. Confidence intervals for BE. Bayesian approach. Nonparametric approach.
2.1.3. The problem of residual effects (carryover)
2.2. Individual and multivariate Bioequivalence
2.2.1. Individual and populational bioequivalence
2.2.2. Multivariate bioequivalence.
2.3. Equivalence tests.
2.3.1. General concept of equivalence test
2.3.2. Main applications: goodness of fit, homogeneity of variances, additivity in linear models, equivalence of proportions
2.3.3. Accessories: No inferiority testing method based on statistics and distances; bioinformatics applications

Learning time: 31h 15m
Practical classes: 12h
Guided activities: 8h
Self study: 11h 15m
BLOCK 3. ASSESSMENT OF THE DATA QUALITY:
RELIABILITY AND CONCORDANCE OF MEASUREMENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 62h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. INTRODUCTION</td>
<td>Theory classes: 22h 30m</td>
</tr>
<tr>
<td>3.1.1. Model of measurement. Types of measurement errors.</td>
<td>Practical classes: 24h</td>
</tr>
<tr>
<td>3.1.2. Concepts: validity, accuracy, reliability and calibration.</td>
<td>Guided activities: 16h</td>
</tr>
<tr>
<td>3.1.3. Classification of the approaches to evaluate agreement.</td>
<td></td>
</tr>
<tr>
<td>3.2. ANALYSIS WITH QUALITATIVE DATA</td>
<td></td>
</tr>
<tr>
<td>3.2.2. Concordance index: kappa index and weighted kappa y kappa. Kappa index extended to k observers.</td>
<td></td>
</tr>
<tr>
<td>3.3. ANALYSIS WITH CONTINUOUS DATA</td>
<td></td>
</tr>
<tr>
<td>3.3.1. Components of discordance: bias, association and heteroscedasticity.</td>
<td></td>
</tr>
<tr>
<td>3.3.2. Coefficient of concordance: definition and generalization.</td>
<td></td>
</tr>
<tr>
<td>3.3.3. Intraclass correlation coefficient: reliability, consistency and concordance.</td>
<td></td>
</tr>
<tr>
<td>3.3.4. Procedures based on probability criteria: tolerance intervals and total deviation index. Bland-Altman approach. Other approaches to assess concordance.</td>
<td></td>
</tr>
<tr>
<td>3.3.5. Assessment of individual bioequivalence as a concordance among measurements issue.</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

Overall mark will be obtained as an average of:

1) Proposed exercises (50%)
2) Test about theoretical concepts treated along the course (50%)
Bibliography

Basic:

Complementary:

