LECTURER

Coordinating lecturer: KLAUS GERHARD LANGOHR

Others:

Primer quadrimestre:
CATALINA BOLANCÉ LOSILLA - A, B
KLAUS GERHARD LANGOHR - A, B
ANTONIO MONLEON GETINO - A, B
DAVID MORIÑA SOLER - A, B

REQUIREMENTS

The intermediate-level R course requires that students have experience in working with R.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. CE-1. Ability to design and manage the collection of information and coding, handling, storing and processing it.
4. CE-5. Ability to formulate and solve real problems of decision-making in different application areas being able to choose the statistical method and the optimization algorithm more suitable in every occasion.
5. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem.
7. CE-9. Ability to implement statistical and operations research algorithms.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

TEACHING METHODOLOGY

Lectures will be held in computer rooms. The first part of the course will be dedicated to R and the second part to SAS. To illustrate the use of functions for statistics and graphics, real data sets will be used. During the course, students will have to do two exams and a final exercise (at home) with each software package.
LEARNING OBJECTIVES OF THE SUBJECT

In this course, two statistical software packages are presented -R and SAS- that are widely used in the academic field as well as in business and industry.

The course aims to enable the student to use both software packages to
· read data from external files,
· carry out descriptive analysis,
· make high quality graphs to represent data,
· fit regression models to data sets,
· write own functions.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>15,0</td>
<td>12.00</td>
</tr>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Introductory R: Introduction to R [Introductory level]

Description:
· a) The web page of R
· b) Installation of R and its contributed packages
· c) Sources of help

Full-or-part-time: 1h 30m
Theory classes: 1h
Laboratory classes: 0h 30m

Introductory R: R objects

Description:
Creation and manipulation of
· a) Numeric and alphanumeric vectors,
· b) Matrices,
· c) Lists,
· d) Data frames.

Full-or-part-time: 6h
Theory classes: 4h
Laboratory classes: 2h
Introductory R: Descriptive and exploratory analysis with R

Description:
- Reading external data files
- Univariate descriptive analysis
- Bivariate descriptive analysis
- Graphical tools: histogram, box plot, scatter plot and others

Full-or-part-time: 6h
- Theory classes: 4h
- Laboratory classes: 2h

Introductory R: Basic programming with R

Description:
- Basic programming: loops with for, while, if-else
- Functions tapply, sapply, lapply
- Writing your own function
- Working with date variables

Full-or-part-time: 6h
- Theory classes: 4h
- Laboratory classes: 2h

Introductory R: Statistical inference with R: hypothesis tests and regression models

Description:
- Hypothesis tests for one population
- Hypothesis tests for two or more populations
- Nonparametric tests
- Fit of general linear models

Full-or-part-time: 1h 30m
- Theory classes: 1h
- Laboratory classes: 0h 30m

Intermediate-level R

Description:
- Review of working with data frames
- Reshaping data sets
- Intermediate level programming with R
- The tidyverse packages

Full-or-part-time: 1h 30m
- Theory classes: 1h
- Laboratory classes: 0h 30m
Advanced R: Creation of R packages and web application with Shiny

Description:
- a) Preparing R code for the package
- b) Preparing the manual of the package
- c) Creating the package, checking, and error debugging
- d) Repositories and publication of packages

Full-or-part-time: 3h
Theory classes: 2h 30m
Laboratory classes: 0h 30m

Advanced R: Version control with R

Description:
- a) Systems for version control (git and subversion).
- b) Github.
- c) Version control in RStudio

Full-or-part-time: 3h
Theory classes: 2h 30m
Laboratory classes: 0h 30m

Advanced R: Automatic report generation with R

Description:
- a) Introduction to markdown
- b) Rmarkdown with RStudio
- c) Generation of presentations with RStudio
- d) Quarto documents with RStudio

Full-or-part-time: 3h
Theory classes: 2h 30m
Laboratory classes: 0h 30m

Advanced R: Parallel programming with R

Description:
- a) Objectives of parallel programming with R.
- b) R packages for parallel programming: parallel, doParallel, SNOW.
- c) Examples.

Full-or-part-time: 3h
Theory classes: 1h 30m
Laboratory classes: 1h 30m
Introduction to SAS

Description:
- a) Structure of the SAS programs: DATA and PROC.
- b) SAS data sets and libraries.
- c) Importation and exportation of data.
- d) Creation of variables. Commands of assignment.
- e) Merging data bases.
- f) Management of data sets

Full-or-part-time: 1h 30m
Theory classes: 1h
Laboratory classes: 0h 30m

Basic procedures with SAS

Description:
- a) Introduction to procedures.
- b) Statistical and graphical procedures.
- c) Introduction to matrix calculus with SAS/IML

Full-or-part-time: 3h
Theory classes: 1h 30m
Laboratory classes: 1h 30m

Management of large databases: SAS/SQL

Description:
- a) Introduction to the SAS/SQL module.
- b) Definition of SAS/SQL tables.
- c) Definition of SAS/SQL databases.
- d) Operations with one or more tables.

Full-or-part-time: 4h 30m
Theory classes: 3h
Laboratory classes: 1h 30m

SAS macros

Description:
- a) Introduction to the SAS macro language.
- b) Definition of macro variables.
- c) Creation of SAS macros.

Full-or-part-time: 1h 30m
Theory classes: 1h
Practical classes: 0h 30m
GRADING SYSTEM

The final grade will be the average of the grades obtained in the different tests
a) with R (50%),
b) with SAS (50%).

Concerning R, there will be two exams (weight of each exam: 30%) and a final practical work at home (weight: 40%). Concerning SAS, there will be two exams in class (weight of each exam: 40%) and a final practical work at home (weight: 20%).

BIBLIOGRAPHY

Basic:

Complementary: