205052 - Design and Behavior of Special Structures

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: Weyler Perez, Rafael
Others: Guanchez Reyes, Edinson
Hernández Rojas, Suilio Eliud

Teaching methodology
The instructor introduces the theoretical concepts associated with the behavior of special structures with examples and practical sessions for a better understanding. The analysis and design methods are explained using practical cases combined with last generation software's. The practical sessions are focused on solving numerical examples and propose solutions for real cases associated with design and construction of special structures for engineering applications.

Learning objectives of the subject

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 27h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

Module 1: Introduction

Learning time: 4h
Theory classes: 2h
Self study: 2h

Description:
Definitions and terminology, behavior of special structures, design philosophy, design requirements, engineering applications, state of art on design processes for non-conventional structures, introduction to software capabilities, suggested readings.

Related activities:
Theoretical and practical sessions.

Module 2: Analysis and design of long span structures (Reinforced and Prestressed Concrete)

Learning time: 17h 30m
Theory classes: 6h 30m
Self study: 11h

Description:
Basic concepts, typical construction procedures, structural behavior, elastic properties of materials. Flexural, shear and combined stresses analysis. Design process for practical purposes. Advantages and limitations regarding the using of concrete for long span structures. Introduction to analysis and design of bridges for industrial purposes. Analysis of real cases using last generation software.

Related activities:
Theoretical and practical sessions.

Module 3: Analysis and design of long span structures (Steel and Composite Structures)

Learning time: 17h 30m
Theory classes: 6h 30m
Self study: 11h

Description:
Basic concepts, elastic properties of materials. Flexural, shear and combined stresses analysis. Structural behavior of long span trusses and non-prismatic elements. Typical construction process. Advantages and limitations. Introduction to hangars design and industrial facilities such as: pipe-racks, platforms and conveyors supports. Analysis of real cases using last generation software.

Related activities:
Theoretical and practical sessions.
Module 4: Analysis and design of slender structures (Steel, concrete and composite materials)

Learning time: 12h
- Theory classes: 4h
- Self study: 8h

Description:
Basic concepts, behavior of slender structures, stability considerations. Wind loads analysis. Engineering applications (electrical towers, chimneys, monopoles for lighting, antennas, mast structures). Analysis of real cases using last generation software.

Related activities:
Theoretical and practical sessions

Module 5: Analysis and design of laminar structures.

Learning time: 18h
- Theory classes: 6h
- Self study: 12h

Description:
Basic concepts related to shell and plate theories, mechanical behavior of shells, structural analysis, physical modelling, recent advances in computation and structural design, analysis of membrane structures. Structural behavior of shells and grid structures. Introduction to Finite Element Analysis (FEM). Engineering applications (silos, bins, tanks, vessels, vaults and domes). Analysis of real cases using last generation software.

Related activities:
Theoretical and practical sessions

Module 6: Foundations

Learning time: 6h
- Theory classes: 2h
- Self study: 4h

Description:

Related activities:
Theoretical and practical sessions
205052 - Design and Behavior of Special Structures

Qualification system

Final Exam 40%
Task Assignments 20%
Proposed activity 40%

Bibliography