205053 - Introduction to Metaheuristics for Optimization Problems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 732 - OE - Department of Management
Academic year: 2019
Degree: MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 3

Teaching languages: English

Teaching staff

Coordinator: Jose M Sallan

Teaching methodology

Through presential classes and proposed exercises, students will learn the basics of metaheuristics and how to apply them to specific optimization problems.

Learning objectives of the subject

The aim of this course is to introduce students to some metaheuristics used to solve optimization problems, such as genetic algorithms, simulated annealing, tabu search and others. At the end of the course, students should be able to define heuristics for specific problems, code them and use the generated code to solve instances of the problem.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>27h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
205053 - Introduction to Metaheuristics for Optimization Problems

Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Learning time</th>
</tr>
</thead>
</table>
| Module 1: Introduction to metaheuristics for optimization problems | Introduction to metaheuristics for optimization problems | **Learning time:** 6h
Theory classes: 3h
Self study: 3h |
| Module 2: Tree search metaheuristics: branch and bound | Tree search metaheuristics: branch and bound | **Learning time:** 15h
Theory classes: 6h
Self study: 9h |
| Module 3: Evolutionary algorithms: genetic algorithms | Evolutionary algorithms: genetic algorithms | **Learning time:** 27h
Theory classes: 9h
Self study: 18h |
| Module 4: Local search metaheuristics: simulated annealing, tabu search | Local search metaheuristics: simulated annealing, tabu search | **Learning time:** 27h
Theory classes: 9h
Self study: 18h |

Qualification system

The grade is obtained through two assignments, weighting 15% each, and two projects, one about heuristics implementation weighting 40% and another about heuristics testing with a weight of 30%.

Bibliography