205067 - Advanced Cubesat Mission Design

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering

Teaching unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering

Academic year: 2019

Degree:
- MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
- MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)

ECTS credits: 3

Teaching languages: English

Teaching staff

Coordinator: Miquel Sureda

Others:
- David González
- Manel Soria
- David de la Torre

Opening hours

Timetable: To be defined.

Prior skills

The student must have a good understanding of programming, mechanics (rigid-body dynamics), basics spacecraft design and orbital mechanics (two-body problem, Keplerian orbits, Hohmann transfer, basic impulsive maneuvers, launch geometry).

Teaching methodology

The course aims to address the design and construction of CubeSats in detail. Therefore, almost all the lessons are developed in a workshop like format, with students distributed in groups to work in a group project.

Learning objectives of the subject

This course aims to give advanced knowledge of nano-satellites design, with particular emphasis on the design process and construction of CubeSats. As final outcome of the course, each group will define a CubeSat mission and will build and test its payload.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 27h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Advanced Cubesat Mission Design

Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Related activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced CubeSat Mission Design</td>
<td>12h</td>
<td>Theory lessons.</td>
</tr>
</tbody>
</table>

Description:
Selecting orbits. Common Examples.

Related activities:
- Theory lessons.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Related activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CubeSat Mission Definition</td>
<td>12h</td>
<td>Theory lessons.</td>
</tr>
</tbody>
</table>

Description:
Mission Concept: Defining a payload and a CubeSat platform.
Mission Timeline: Design, production, test campaigns, launch, deployment and operations.

Related activities:
- Theory lessons.
- Workshop.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Related activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Subsystems Design</td>
<td>30h</td>
<td>Theory lessons.</td>
</tr>
</tbody>
</table>

Description:
- Mechanical Design: Frameworks and structures, stress analysis, loads and stiffness, elastic instabilities, vibration, materials selection, structural analysis.
- Thermal Design: Thermal sources and transport mechanisms in space, thermal balance, thermal control elements, thermal design and implementation.
- Comms and Data Handling Design: Tracking, telemetry and command systems. RF link, data handling, OBCs.

Related activities:
- Theory lessons.
- Workshop.
205067 - Advanced Cubesat Mission Design

Payload Design

<table>
<thead>
<tr>
<th>Learning time: 21h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study: 17h</td>
</tr>
</tbody>
</table>

Description:
Payload Design Production and Testing: Detailed design, production, ambient test campaign, environmental test campaign, Payload Delivery.

Related activities:
- Theory lessons.
- Workshop.

Qualification system

The course will be graded based on:

- Individual exercises: 30%
- Final group project: 70%

In case of being unable to hand the individual exercises or not passing them, the student will have a second opportunity.

Bibliography

Basic:

Complementary:

Others resources:
Due to the characteristics of this course relevant web-based material and scientific publications are a very important source of information.