Course guide
205096 - 205096 - Research on Fluid Mechanics

Last modified: 19/04/2023

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 729 - MF - Department of Fluid Mechanics.
Degree:
- MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Optional subject).
- MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Optional subject).
- MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Optional subject).

Academic year: 2023
ECTS Credits: 3.0
Languages: English

LECTURER

Coordinating lecturer: Francisco Javier Arias Montenegro
Others: Salvador Augusto De Las Heras Jimenez

TEACHING METHODOLOGY

The course is divided into:

1. Face-to-face activities. Lecture on selected topics in fluid mechanics. Theoretical subjects will be discussed.
by the students, with guidance from the professor. Brief presentations by students may occasionally be
requested.

2. Autonomous work. Self-study, problem solving, lectures on several topics

LEARNING OBJECTIVES OF THE SUBJECT

Learning outcomes:

- Identify the research process broadly as all exploratory activity of which the purpose is to come to a better
understanding of the natural world.

- Identify the main parts involved in the research methodology and with particular reference in fluid
mechanics.

- Solve a real actual research problem either proposed by the student or the teacher related to fluid
mechanics.

- To endow student with the capacity to carry out an original research idea from its inception with guidance
from the teacher to the publication of results in a journal.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>19.0</td>
<td>25.33</td>
</tr>
<tr>
<td>Self study</td>
<td>48.0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>8.0</td>
<td>10.67</td>
</tr>
</tbody>
</table>

Total learning time: 75 h
CONTENT

Module 1: Research on Fluid Mechanics

Description:
1. Brief introduction to scientific method in scientific research on fluid mechanics
2. Tools in fluid mechanics research: experimentation and computational simulation
3. Essential guidelines for computational method benchmarking
4. The publication of research results: How to write and publish a scientific paper.

Full-or-part-time: 75h
Theory classes: 27h
Self study: 48h

GRADING SYSTEM

The assessment of the learning process is based on the following activities each one having a given weight in the final grade as follows:

1. An article written by the student on an identified research topic on fluid mechanics. This article could be potentially submitted to a peer review in an indexed journal: 50%
2. Oral presentations of the work done: 25%
3. Short quizzes posed during class sessions can occasionally be used to define deliverables, 25%