220224 - Structures of New Generation Materials

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering
Academic year: 2017
Degree: MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: Weyler Perez, Rafael
Others: Hernandez Rojas, Suilio Eliud

Teaching methodology
The course is divided into two parts:
Theoretical sessions in which the instructor introduces the theoretical basis of the concepts, methods and results and illustrates them with examples appropriate to facilitate their understanding, and problem-based learning sessions. The instructor will provide the syllabus and monitoring of activities (ATENEA).

Learning objectives of the subject
This course aims to:
Provide an understanding of the underlying principles and techniques associated with the stress analysis and strength predictions of advanced structures.
Provide a hands-on experience of the solution methods and procedures pertaining to the analysis of real structural problems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 27h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study:</td>
<td>48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

| Module 1: Introduction | Learning time: 3h
Theory classes: 2h
Self study: 1h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Definitions and terminology; Types and classification; Constituent materials; Overview of advantages and limitations; General properties; Design requirements; Significance and objectives; The role of stress analysis; Scales of analysis and methods; Engineering applications; Study areas; Current status and future prospects; Suggested readings.</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Theoretical and practical sessions.</td>
</tr>
</tbody>
</table>

| Module 2: Micromechanical analysis | Learning time: 10h
Theory classes: 4h
Self study: 6h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Micromechanical approaches (mechanistic, analytics and empirics); Volume and mass fractions; Representative volume element RVE; Serial-parallel rule of mixtures and modified; Evaluation of the composite elastic properties; Ultimate strengths; Micromechanical failures; Damage models; Hygrothermoelastic (HTE) effects.</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Theoretical and practical sessions.</td>
</tr>
</tbody>
</table>

| Module 3: Mesomechanical analysis | Learning time: 18h
Theory classes: 4h
Self study: 14h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Terminology and notation; Compatibility, constitutive and equilibrium equations; Generalized Hook’s Law; Stress-strain relations of elastic materials; Degrees of anisotropy; Engineering constants; Plane stress state and constitutive relations; Constitutive relations of unidirectional ply; Stiffness of on-axis ply; Engineering constants of on-axis ply; Global and local coordinate references; Multiangle transformation matrices; Coupling effects; Mutual influence coefficients; Hygrothermoelastic (HTE) effects; Ply strength; Failure theories; Polynomial criteria; Failure envelopes.</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Theoretical and practical sessions.</td>
</tr>
</tbody>
</table>
Module 4: Macromechanical analysis

Description:
Stacking sequence and laminate code; Classical laminated plate theory; Kirchhoff hypothesis; Strain-stress relations; In-plane force and moment resultants; General load-deformation relations; Laminate stiffnesses; ABD matrices; Laminate coupling relationships; Classification of laminates; Effective engineering constants; Design considerations; Normalized matrices; Laminate effective engineering constants; Sandwich laminates.

Related activities:
Theoretical and practical sessions.

Learning time: 23h
- Theory classes: 8h
- Self study: 15h

Module 5: Full-section analysis

Description:
Composite beams; Governing equations; Solid beams subjected to axial load and bending; Thin-walled open-section and closed-section beams; Torsion of thin-walled beams; Thin-walled with arbitrary stacking sequence; Transversely loaded thin-walled beams; Stiffened thin-walled beams; Buckling of beams; Free vibration

Related activities:
Theoretical and practical sessions.

Learning time: 16h
- Theory classes: 7h
- Self study: 9h

Module 6: Experimental methods for characterization and testing

Description:
Characterization of constituent materials; Physical characterization of composite materials; Tensile, compressive and shear properties; Interlaminar fracture toughness; Biaxial testing; Impact damage and tolerance; Characterization with stress concentrations; Scaling effects in laminated composites; Standard test; Non Destructive testing; Full-scale tests.

Related activities:
Theoretical and practical sessions.

Learning time: 5h
- Theory classes: 2h
- Self study: 3h
220224 - Structures of New Generation Materials

Qualification system

Partial exam 25 %
Final Exam 40 %
Task assignments 20 %
Proposed activity 15 %

Bibliography

Basic: