220225 - Surface Engineering

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 702 - CMEM - Department of Materials Science and Metallurgy
Academic year: 2019
Degree: MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: M. Núria Salán
Others: Carles Colominas
Juan Muñoz, Jaime
Illescas Fernández, Silvia

Opening hours
Timetable: Tuesday and Thursday from 11 to 14 h

Teaching methodology
The course is divided into parts:
Theory classes
Practical classes
Self-study for doing exercises and activities.
In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding.
In the practical classes (in the classroom), teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning. We propose that students solve exercises in and outside the classroom, to promote contact and use the basic tools needed to solve problems.
Students, independently, need to work on the materials provided by teachers and the outcomes of the sessions of exercises/problems, in order to fix and assimilate the concepts.
The teachers provide the syllabus and monitoring of activities (by ATENEA).

Learning objectives of the subject
Knowing about heat treatments, coatings, thermomechanical treatments or other techniques that can introduce some changes in surface components in order to suit them to service requirements.
Introduction of main surface analysis and characterization techniques in order to determine quality and effectiveness of modified surfaces mostly applied to metal alloys. Learn about the latest advances in coatings and different utilities of each.
### Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27h</td>
<td>48h</td>
</tr>
<tr>
<td></td>
<td>36.00%</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
# 220225 - Surface Engineering

## Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Learning time</th>
<th>Related activities</th>
</tr>
</thead>
</table>
| Module 1: Surface heat treatments | Surface heat treatments in metal alloys  
- Flame quenching, induction quenching, laser quenching, electron beam quenching  
- Characteristics and requirements  
- Applications | 25h  
Theory classes: 9h  
Self study: 16h |  
Individual questionnaire  
Team work |
| Module 2: Thermochemical treatments | Surface thermomechanic treatments for metallic alloys  
- Shot peening  
- Laser peening | 25h  
Theory classes: 9h  
Self study: 16h |  
Individual questionnaire  
Team work |
| Module 3: Surface Engineering-Coatings |  
- PVD, CVD  
- TBC (Thermal Barrier Coatings)  
- DLC (Diamond Like Coatings) | 25h  
Theory classes: 9h  
Self study: 16h |  
Individual questionnaire  
Team work |
220225 - Surface Engineering

Qualification system

Deliverables modules 1-2-3: 40%
Teamwork: 40%
Subjective qualification: 20%

Bibliography

Basic:
