Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Coordinator: Vanessa del Campo Gatell

Timetable: Tutorship hours are flexible and will be agreed personally with the students.

Prior skills
This course is open to all graduate engineers that are willing to learn communication techniques through audiovisual media. Scientific background and interest in communication and documentary is therefore necessary.

No previous audiovisual knowledge is required, although photography, video and writing skills will be welcomed capacities.

Requirements
The course will be taught in English.

Degree competences to which the subject contributes

Transversal:
CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT1a. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit.
220245 - Science and Technology Communication Through Media

Teaching methodology

During lessons there will be:
- Theory expositions based on practical examples.
- Practical implementation of the theories explained.

Learning objectives of the subject

This course is for those who want to improve their skills in science and technology communication through audiovisual media.

During the course, the student will be challenged to explore his/her creativity and reflect on the way to present and explain to the public audience the goals of a scientific project. Furthermore, the course will focus on science and technology communication through audiovisual media, analyzing the key factors of narrative, film form and documentary production. Social impact and effects of science communication will be discussed during the sessions.

The contents and skills acquired during the course will be of great use in terms of leadership, social communication, and funding opportunities. It is aimed to all engineers interested in communication, research and social commitment.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 27h 36.00%</th>
<th>Hours medium group: 0h 0.00%</th>
<th>Hours small group: 0h 0.00%</th>
<th>Guided activities: 0h 0.00%</th>
<th>Self study: 48h 64.00%</th>
</tr>
</thead>
</table>

During lessons there will be:
- Theory expositions based on practical examples.
- Practical implementation of the theories explained.
Module 1: Documentary analysis.

Description:
In this module we study some of the contemporary debates surrounding science and its place in the world. Besides, we will analyze some of the seminal works in the history of the documentary film.

Related activities:
Class debate.
Science documentary projection and analysis.

Specific objectives:
Science Communication Debate.
Science Documentary Analysis.

<table>
<thead>
<tr>
<th>Learning time: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study : 4h</td>
</tr>
</tbody>
</table>

Module 2: Scientific Project Selection and Pitchings

Learning time: 10h

| Theory classes: 2h |
| Self study : 8h |

Description:
Students will choose a technological or science issue they would like to investigate for a future short documentary. Pitchings will be done.

Related activities:
Scientific projects at ETSEIAT research
Pitching session

Specific objectives:
Scientific project selection.

Module 3: Film language Analysis

Learning time: 14h

| Theory classes: 10h |
| Self study : 4h |

Description:
This module introduces students to the audvisual language.

Related activities:
Analysis of different examples in fiction and documentary films.

Specific objectives:
The student will analyse the effect of framing, color, light, camera movements, space, sound, dialogues and editing in the film form.
Module 4: Script and step outline writing

<table>
<thead>
<tr>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Description:
This module introduces key concepts from narrative theory and the step outline composition.

Related activities:
Script and step outline creation for a scientific short film.

Specific objectives:
- Understanding the basic concepts of: Conflict, development and resolution.
- Plot twists and climax point.
- Narrator and point of view.
- Time and rhythm.
- The plot and its subtext.
- The characters.

Module 5: Photography Project

<table>
<thead>
<tr>
<th>Learning time: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

Description:
This module will focus on the basic techniques of photography and video edition.

Related activities:
Photography research work on the scientific project chosen.

Specific objectives:
- Understanding the basic concepts of: Photography: format, aspect ratio, diaphragm aperture, composition, depth of field.
- Edition: time line, racord, rhythm.
Module 6: Final Project. Scientific Short Film

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>23h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>3h</td>
</tr>
<tr>
<td>Self study:</td>
<td>20h</td>
</tr>
</tbody>
</table>

Description:
This module introduces the different roles in the production, shooting and edition of a scientific short film.

Related activities:
Production, shooting and edition of a documentary scientific short film.

Specific objectives:
Identify the different roles necessary in the filming of a short movie: director, director assistant, producer, script, photographer, photographer assistant, sound engineer, editor, ...

Qualification system

The course will be graded based on:
- Attendance to lessons
- Exercises.
- Final audiovisual project.

Regulations for carrying out activities

Final Project and Exercises will be executed mostly out of the assigned lesson hours. It is therefore compulsory that each student is able to defend the authorship of the projects handed to the teacher.
Bibliography

Complementary:

Others resources:

Audiovisual material

Cosmos
Carl Sagan

Cosmos: a spacetime Odyssey
Neil deGrasse Tyson

Particle fever
Mark Levinson