220291 - Advances in Textile Fibers

Degree competences to which the subject contributes

Specific:
1. Ability to apply multivariate analysis techniques in market knowledge about materials and textiles in order to implement a flow production system.
2. Ability to develop new fibers or yams and woven and non-woven structures according to specifications and latest technologies for specific technical applications.
3. Ability to manage and optimize production processes of technical textiles.

Learning objectives of the subject

OE1. To know the main characteristics and properties of the textile fibres used for technical applications
OE2. To be able to develop new fibres for specific applications

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
220291 - Advances in Textile Fibers

Content

<table>
<thead>
<tr>
<th>TOPIC 1. Introduction to the innovations in textile fibres</th>
<th>Learning time: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: 1.1. Innovations in the field of high performance fibres, high functionality fibres, nanofibres, biofibres, etc.</td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 1h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOPIC 2. High performance fibres</th>
<th>Learning time: 52h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: 2.1. High mechanical performance fibres: Polyethylene HP, Polyamide HP, Polyester HP, Alcohol de Polyvinyl HP, Acrylic HP, etc. 2.2. High thermally resistant fibres: polybenzoazole (PBO, PBI, PBIOH), polysulphurs of phenilene (PPS), fluorcarbonfibres, fibres from thermoset polymers, Polyetherketones (PEEK), Aromatic polyamides, carbon fibres, glass fibres, ceramic fibres, etc.</td>
<td>Theory classes: 12h</td>
</tr>
<tr>
<td>Related activities: X</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>Specific objectives: OE1</td>
<td>Self study: 34h</td>
</tr>
<tr>
<td>Related activities: Sessions of theory Sessions of practical work at class Sessions of practical work at laboratory</td>
<td>Specific objectives: OE1, OE2</td>
</tr>
</tbody>
</table>
TOPIC 3. High functionality fibres

Learning time: 18h
Theory classes: 5h
Laboratory classes: 1h
Self study: 12h

Description:
3.1. High comfort fibres
3.2. Conductive/antistatic fibres
3.3. Superabsorbent fibres
3.4. Antibacterial and antifungal fibres
3.5. Thermocromic fibres
3.6. Another high functionality fibres

Related activities:
Sessions of theory
Sessions of practical work at class
Sessions of practical work at laboratory

Specific objectives:
OE1, OE2.

TOPIC 4. Fibres from biopolymers

Learning time: 30h
Theory classes: 8h
Laboratory classes: 3h
Self study: 19h

Description:
4.1. Introduction to biopolymers
4.2. Fibres based on natural polymers
4.3. Fibres obtained from biomass
4.4. Fibres synthesised from microorganisms
4.5. Fibres synthesised from monomers obtained from biomass
4.6. Bast fibres

Related activities:
Sessions of theory
Sessions of practical work at class
Sessions of practical work at laboratory

Specific objectives:
OE1, OE2
TOPIC 5. Microfibres and nanofibres

Learning time: 23h
- Theory classes: 4h
- Laboratory classes: 5h
- Self study: 14h

Description:
5.1. Introduction
5.2. Microfibres
5.3. Nanofibres: electrospinning, nanoweb structure, characterization and applications

Related activities:
- Sessions of theory
- Sessions of practical work at class
- Sessions of practical work at laboratory

Specific objectives:
OE1, OE2

Qualification system

Exam 1: 20%
Exam 2: 20%
Exercises and practical cases: 30%
Course project: 30%

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.
If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.
Bibliography

Basic:

Others resources: