220325 - Air Transport

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 732 - OE - Department of Management
Academic year: 2018
Degree: MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Oriol Lordan

Degree competences to which the subject contributes

Specific:
CEEAEROP3. MUEA/MASE: The ability to apply analytical and business management techniques to aeronautical companies (specific competency for the specialisation in Airports).
CEEAEROP2. MUEA/MASE: The ability to design and calculate airport installations (specific competency for the specialisation in Airports).
CEEAEROP1. MUEA/MASE: The ability to analyse airport operations, planning and air transport (specific competency for the specialisation in Airports).

Teaching methodology

The course is divided into parts:
- Theory classes
- Practical classes
- Self-study for doing exercises and activities

In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding.

In the practical classes (in the classroom), teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning. We propose that students solve exercises in and outside the classroom, to promote contact and use the basic tools needed to solve problems.

Students, independently, need to work on the materials provided by teachers and the outcomes of the sessions of exercises/problems, in order to fix and assimilate the concepts.
The teachers provide the syllabus and monitoring of activities (by ATENEA).

Learning objectives of the subject

The course Air Transport introduces students to the concepts, principles and fundamentals of optimization problems for analysis and decision-making of airline operations and scheduling such as fleet assignment, aircraft routing, crew scheduling and manpower planning.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

| Module 1: Introduction | Learning time: 13h 20m
Theory classes: 3h 20m
Laboratory classes: 1h 40m
Self study: 8h 20m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
</tbody>
</table>
| - Graph theory and integer linear models
 - Graph basics
 - Graph topology
 - Basic graph problems used in air transport
 - Basic ILP used in air transport
- Flight scheduling | |

| Module 2: Fleet assignment | Learning time: 27h 55m
Theory classes: 6h 40m
Laboratory classes: 3h 20m
Self study: 17h 55m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>- Introduction</td>
<td></td>
</tr>
<tr>
<td>- Fleet assignment problem</td>
<td></td>
</tr>
<tr>
<td>- Fleet assignment linear model</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Activity 1</td>
<td></td>
</tr>
<tr>
<td>Project, part 1</td>
<td></td>
</tr>
</tbody>
</table>

| Module 3: Aircraft Routing | Learning time: 27h 55m
Theory classes: 6h 40m
Laboratory classes: 3h 20m
Self study: 17h 55m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>- Introduction</td>
<td></td>
</tr>
<tr>
<td>- Aircraft Routing problem</td>
<td></td>
</tr>
<tr>
<td>- Aircraft Routing linear model</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Activity 2</td>
<td></td>
</tr>
<tr>
<td>Project, part 1</td>
<td></td>
</tr>
</tbody>
</table>
The final grade depends on the following assessment criteria:
Activities 1-4: Activities in class, weight: 60% (15% each)
Project, parts 1-2: Project in groups, weight: 40% (20% each)

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.
If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.
Bibliography

Basic:

Complementary:

