220333 - Spacecraft Design

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering

Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering

Academic year: 2017

Degree:
- MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
- MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)

ECTS credits: 5

Teaching languages: English

Teaching staff

Coordinator: Miquel Sureda

Opening hours

Timetable

Prior skills

Basic space engineering knowledge (Subject 220057 - Space Engineering)

Teaching methodology

The main objective of this course is to provide the required knowledge and resources to design a space mission. A series of lectures will introduce the different aspects involved in a space mission design. The student will apply this knowledge and resources to carry out an assignment and a project, with guidance and supervision during the whole semester.

A mid-term and final exam will test the knowledge acquired during the semester.

Learning objectives of the subject

Ability to analyze and design a space mission:

This subject will provide the student basic knowledge on Systems Engineering and Mission Analysis, as well as the required knowledge and resources to design a space vehicle, including the payload and the following subsystems:

* Structures
* Electrical Power System
* Attitude Control
* Communication
* Navigation
* Propulsion
* Environmental Control and Life Support System
Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
220333 - Spacecraft Design

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time:</th>
<th>Description:</th>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5h</td>
<td>Introduction to the course. Past, present and future of space missions: history of space missions, which missions are currently being carried out?, which are the future objectives of space agencies and private companies?</td>
<td>Mid-term Exam</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>12h</td>
<td>Introduction to Systems Engineering: what are the phases of a project? What is concurrent engineering? How can the cost of a mission be estimated? Mission Concept Design: Definition of concepts such as mission statement, objectives, requirements and constrains.</td>
<td>Assignment Mid-Term Exam</td>
</tr>
</tbody>
</table>
220333 - Spacecraft Design

Spacecraft Subsystems

Learning time: 67h
Theory classes: 18h
Laboratory classes: 8h
Self study: 41h

Description:
Review of Subsystems:
* electric power
* thermal control
* structures

Definition, design process and technology options for each subsystem:
* propulsion
* altitude and orbit determination and control
* communication and data handling
* environmental control and life support
* payload
* launchers

Related activities:
Project (Part 2: Preliminary Design)
Final Exam

Qualification system

Final Grade = Assignment (10%) + Project (60%) + Final Exam (30%)

In case of being unable to hand the assignments or not passing them, the student will have a second opportunity for the day of the final exam.

Bibliography

Basic:

Complementary: