220342 - Extension of Jet Engines

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Manel Soria Guerrero
Josep Oriol Lizandra Dalmases

Opening hours
Timetable: By agreement between teacher and student

Prior skills
Previous concepts include knowledge of propulsion systems for aircraft and spacecraft, given in any bachelor?s degree in aerospace engineering and reviewed in previous subjects of this Master?s degree, as well as familiarity with the use of computing tools for engineering.

Degree competences to which the subject contributes
Specific:
CEEDPROP1. MUEA/MASE: Sufficient applied knowledge of aspects of measurement, calculation and numerical resolution in experimental and computational aerodynamics (specific competency for the specialisation in Propulsion).
CEEDPROP2. MUEA/MASE: Advanced applied knowledge of the design, manufacture and maintenance of propulsion systems (specific competency for the specialisation in Propulsion).

Teaching methodology
Classroom lectures combined with assignments to be solved during the class with the help of the professor

Learning objectives of the subject
- Understand the current state of jet engine technologies, their limits and their future trends.
- Understand how jet engines can be modelled and optimized for different applications.
- Acquire a hands-on experience with test-benches of small-scale jet engines and their instrumentation.
220342 - Extension of Jet Engines

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

Content

Module 1: Introduction. Current jet engine technology, limits and future trends

Learning time: 40h

- Theory classes: 10h
- Practical classes: 5h
- Self study: 25h

Description:
- Review of previous concepts
- Supersonic propulsion
- SCRAMJET
- Turborockets

Module 2: Numerical models of jet engines and multiheuristic optimization

Learning time: 40h

- Theory classes: 10h
- Practical classes: 5h
- Self study: 25h

Description:
- System engineering numerical models of jet engines
- Multiheuristic optimization
- Hands-on work

Module 3: Testing of jet engines

Learning time: 45h

- Theory classes: 10h
- Practical classes: 5h
- Self study: 30h

Description:
- Instrumentation
- Data logging
- Hands-on work
Qualification system

Assignments 30%
Project 40%
Exam 30%

Students with a grade below 5.0 in the assignments and/or the project, will be able to do an additional exam in order to compensate for the poor results. The new grade will replace the original only if it is higher. The maximum grade that can be obtained with this additional exam is 5.0.

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept.

If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.

Bibliography

Basic:


