220353 - Architecture and Aircraft Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN AERONAUTICAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
MASTER'S DEGREE IN SPACE AND AERONAUTICAL ENGINEERING (Syllabus 2016). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff

Coordinator: Carlos Esbri

Degree competences to which the subject contributes

Specific:
CEEVEHI1. MUEA/MAS: Sufficient applied knowledge of advanced, experimental and computational aerodynamics (specific competency for the specialisation in Aerospace Vehicles).
CEEVEHI2. MUEA/MAS: Sufficient applied knowledge of the aeroelasticity and structural dynamics of aircraft (specific competency for the specialisation in Aerospace Vehicles).
CEEVEHI3. MUEA/MASE: Applied knowledge of composite materials technology and a capacity for designing the basic elements of these materials (specific competency for the specialisation in Aerospace Vehicles).

Teaching methodology

The course is divided into parts:
Theory classes
Practical classes
Self-study for doing exercises and activities.
In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding.
In the practical classes (in the classroom), teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning. We propose that students solve exercises in and outside the classroom, to promote contact and use the basic tools needed to solve problems.
Students, independently, need to work on the materials provided by teachers and the outcomes of the sessions of exercises/problems, in order to fix and assimilate the concepts.
The teachers provide the syllabus and monitoring of activities (by ATENEA).

Learning objectives of the subject

To know the different systems that integrate an aeroplane, his architecture and operation.
To understand the structural design of an aeroplane.
220353 - Architecture and Aircraft Systems

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h 24.00%</th>
<th>Hours small group: 15h 12.00%</th>
<th>Self study: 80h 64.00%</th>
</tr>
</thead>
</table>
220353 - Architecture and Aircraft Systems

<table>
<thead>
<tr>
<th>Module 1: Power Systems</th>
<th>Learning time: 37h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 12h</td>
</tr>
<tr>
<td></td>
<td>Self study: 25h</td>
</tr>
</tbody>
</table>

Description:
- Hydraulic
- Pneumatic
- Electrical

Related activities:
- Activity 1: Classes of theory
- Activity 2: Partial examination

<table>
<thead>
<tr>
<th>Module 2: Representative Systems</th>
<th>Learning time: 38h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 13h</td>
</tr>
<tr>
<td></td>
<td>Self study: 25h</td>
</tr>
</tbody>
</table>

Description:
- Flight control
- Air conditioning
- Fuel

Related activities:
- Activity 1: Classes of theory
- Activity 3: final examination
NF = 0,40 EP + 0,40 EF + 0,20 TD
NF : Final score
EP : Partial examination
EF : Final examination
TD : Development work

For those students who meet the requirements and submit to the reevaluation examination, the grade of the reevaluation exam will replace the grades of all the on-site written evaluation acts (tests, midterm and final exams) and the grades obtained during the course for lab practices, works, projects and presentations will be kept. If the final grade after reevaluation is lower than 5.0, it will replace the initial one only if it is higher. If the final grade after reevaluation is greater or equal to 5.0, the final grade of the subject will be pass 5.0.