220671 - Combinatorial Optimisation Methods

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2018
Degree: MASTER'S DEGREE IN MANAGEMENT ENGINEERING (Syllabus 2012). (Teaching unit Optional)
MASTER'S DEGREE IN MANAGEMENT ENGINEERING (Syllabus 2012). (Teaching unit Optional)
ECTS credits: 3

Teaching languages: English

Coordinator: MARIA ALBAREDA SAMBOLA
Others: MARIA ALBAREDA SAMBOLA

Teaching methodology

The course is divided into two parts:
Sessions where contents will be exposed and discussed.
Autonomous work that will include self-study, guided readings, and exercises and activities.

During the presentational sessions, teachers will introduce the theoretical basis of the subject, concepts, methods and results will be illustrated with suitable examples to facilitate understanding. There will be also discussions on the guided readings that the students will have done independently.

Students, will work independently, on the material provided by teachers in order to prepare the work sessions, studying and doing problems to assimilate and fix concepts. The teachers will provide activity monitoring (ATENEA).

Learning objectives of the subject

The aim of this course is giving an overview of the methods used commonly in combinatorial optimization applications using as examples facility location problems and vehicle routing problems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 8h</th>
<th>10.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 3h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 16h</td>
<td>21.33%</td>
</tr>
<tr>
<td></td>
<td>Self study: 48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
220671 - Combinatorial Optimisation Methods

Content

<table>
<thead>
<tr>
<th>- Combinatorial Optimization</th>
<th>Learning time: 75h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 16h</td>
</tr>
<tr>
<td></td>
<td>Self study: 48h</td>
</tr>
</tbody>
</table>

Description:
Introduction
Heuristic Methods
Bounding procedures.

Related activities:
Class expositions
Paper discussions
Project

Specific objectives:
The aim is to give a general overview of the usual methodologies in combinatorial optimization, using as reference applications facility location and vehicle routing problems.

Qualification system

The rating of the course will be based on two different activities:
- A written exam, with a weight of 50%
- Written reports to the readings, with a weight of 50%

The day scheduled by the School within the final exams period, there will be an additional exam that will be used to overcome unsatisfactory results in the written exam, and also to evaluate the students who, for any reason, could not attend to the written exam. The grade of this exam, between 0 and 10, will replace the grade obtained in the written exam as long as it is higher.

Bibliography

Basic: