230350 - MTI - Marine Technology Instrumentation

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2013
Degree: MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN RESEARCH ON INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN RESEARCH ON INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2006). (Teaching unit Optional)
ERASMUS MUNDUS MASTER'S DEGREE IN RESEARCH ON INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)

ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Joaquin del Rio Fernandez
Others: Daniel Mihai Toma, Spartacus Gomariz

Degree competences to which the subject contributes

Specific:
CE1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.
CE2. Ability to develop radio-communication systems: antennas design, equipment and subsystems, channel modeling, link dimensioning and planning.
CE3. Ability to implement wired/wireless systems, in both fix and mobile communication environments.
CE4. Ability to design and dimension transport, broadcast and distribution networks for multimedia signals
CE8. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services
CE14. Ability to develop electronic instrumentation, as well as transducers, actuators and sensors.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
Learning objectives of the subject:
The aim of this course is to train students in methods of design, dimensioning and evaluation of data communications networks. First, we consider the parameters of interest for telematics network planning and mathematical tools we have. Then, using this knowledge, will study data routing mechanisms, network allocation capacity, congestion control and multiple access techniques.

Learning results of the subject:
- Ability to specify, design networks, services, processes and applications of telecommunications in both a fixed, mobile, personal, local or long distance, with different bandwidths in multicast networks, including voice and data.
- Ability to apply both traffic engineering tools as planning tools, dimensioning and network analysis.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

Teaching methodology

- Lectures
- Laboratory classes
- Laboratory practical work
- Oral presentations
- Extended answer test (Final Exam)
Content

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 125h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 60h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 37h 30m</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 15h</td>
</tr>
<tr>
<td></td>
<td>Self study : 12h 30m</td>
</tr>
</tbody>
</table>

Description:

1. Image processing for submarine video images.
2. Electric Power Quality and Ship Accidents
3. Smartphone and augmented reality for on-site and remote applications in the field of measurements
4. Introduction to signal preprocessing circuits for sensors and description of digitizing circuits (parameters, errors, error correction methods, ADC architectures and models, ADC testing
5. Measure of water quality (conductivity, turbidity, pH, etc.) and IEEE 1451 family of standards in marine instrumentation
6. Wireless Sensor Networks (WSN): introduction and applications. Distributed measurement systems for water quality monitoring; WSN with underwater links. GPS and its use in surface and underwater navigation
7. Tracking and labeling of species. Hydrophones, ceramic piezoelectrics, audio amplifiers Digital communication applied to underwater acoustics
9. Practice on navigation, related sensors and measuring systems
10. Introduction to Wireless Sensor Network. DAC basics. Overview of instrumentation and measurement chain. Introduction to oceanographic measurement systems: properties, applications and technology challenges
11. Inertial, classical and electronic compass navigations, LORAN, GPS, magnetic sensors and underwater magnetic observatories and communication basics - from modulations to GNSS.
12. Analog functions for measurement signals

Qualification system

Group assessments: 100%
Regulations for carrying out activities

Laboratory :
P1. Matlab with the toolbox "image processing"
P2 Image processing in OBSEA observatory
P3 Use of LabView as a tool in the design of the measurement systems applied to the marine environment, exercises using real time FPGA system myRIO
P4: Acquisition and signal processing using Matlab
P5. Use of Matlab for underwater acoustics simulations
P6. Coastal ocean observatories and Radio link
P7. Equipment for measuring the water column. Measurement of conductivity and depth. Calibration of CTDs
P8. Navigation test with Guanay II. Motion simulation with Matlab-Simulink
P9. "Plug & work" and time synchronization of instruments
P10. Numerical simulations of rigid body motion and a simple multi-body system using Matlab-Simulink

Oral presentation:
- Description: Presentation of a work group.

Bibliography

Basic:

