Course guide
230354 - MICPHOT - Microwave Photonics

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree: Academic year: 2015 ECTS Credits: 2.5
Languages: English

LECTURER

Coordinating lecturer: María SANTOS
Others: María SANTOS

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE2. Ability to develop radio-communication systems: antennas design, equipment and subsystems, channel modeling, link dimensioning and planning.
CE3. Ability to implement wired/wireless systems, in both fix and mobile communication environments.
CE13. Ability to apply advanced knowledge in photonics, optoelectronics and high-frequency electronic

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

TEACHING METHODOLOGY

- Lectures
- Application classes
- Laboratory classes
- Group work (distance)
- Individual work (distance)
- Exercises
- Oral presentations
- Other activities
- Short answer test (Control)
- Short answer test (Test)
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to train students in the methods for the analysis of photonic systems for applications in the microwave and millimeter wave frequencies such as wireless and satellite communications, remote sensing and Earth Observation, etc.

Learning results of the subject:

- Knowledge of the basic concepts and techniques related to applications of electromagnetic wave propagation at microwave frequencies in the fields of communications, satellite and remote sensing.
- Knowledge of the fundamental photonic components, materials and manufacturing processes for these applications.
- Understanding of the basic phenomena involved in the generation, detection, and frequency conversion of electromagnetic waves in both microwave and photonic frequency bands.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>42,5</td>
<td>68.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>20,0</td>
<td>32.00</td>
</tr>
</tbody>
</table>

Total learning time: 62.5 h

CONTENTS

1. Introduction

Description:
Review of electronic and photonic components for Microwave applications of Photonics. Transmission and distribution of microwave signals through optical fiber.

Full-or-part-time: 12h 30m
Theory classes: 6h
Self study : 6h 30m

2. Performance metrics for Microwave Photonic Sytems

Description:
- Figures of Merit for assessing the performance of microwave photonic systems. Directly modulated laser (DML) and Externally modulated Laser systems (EML).
- Gain
- Noise Figure
- Intermodulation Distortion
- Optimization techniques

Full-or-part-time: 30h
Theory classes: 12h
Self study : 18h
3. Case studies of Microwave Photonic (MWP) Systems

Description:
- Microwave signal distribution Networks
- MWP mixers
- Filters
- Beam steering Networks
- Other MWP systems: ADC, Oscillators, ...

Full-or-part-time: 30h
Theory classes: 12h
Self study: 18h

GRADING SYSTEM

Exercises: from 20% to 30%
Individual assessments: from 40% to 60%
Group assessments: from 20% to 30%

Exercises:
- Description: Exercises to strengthen the theoretical knowledge.

Oral presentation:
- Description: Presentation of a work group.

Short answer test (Test):
- Description: Partial evaluation test with theoretical questions and short exercises.

BIBLIOGRAPHY

Basic: