Course guide
230361 - SCD - Solar Cells for Dummies

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.
Degree: MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Optional subject).
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2022). (Optional subject).
Academic year: 2022 ECTS Credits: 2.5 Languages: English

LECTURER

Coordinating lecturer: Joaquim Puigdollers
També podeu consultar-ho aquí / See here:
https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura

Others: Consultar aquí / See here:
https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

PRIOR SKILLS

The requirements to take this seminar are a science-based degree (engineering, physics, chemistry, biology)

REQUIREMENTS

See previous paragraph

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEE12. Ability to use semiconductor devices taking into account their physical characteristics and limitations.
CEE24. Ability to identify and evaluate innovative ideas and products in the area of electronic technology.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

TEACHING METHODOLOGY

The teaching methodology is based on master classes with continuous interaction with the student. Apart from the lectures provided by the teacher, students will be provided with scientific articles that will be discussed in class.
LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course the student will understand the principles of operation of any kind of solar cell, independently of the compounds they are based on. Solar cells based on emerging semiconductors will be described with more detail.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>20.0</td>
<td>32.00</td>
</tr>
<tr>
<td>Self study</td>
<td>42.5</td>
<td>68.00</td>
</tr>
</tbody>
</table>

Total learning time: 62.5 h

CONTENTS

The use of selective contacts in solar cells

Description:
2: Solar cell: absorber + selective contacts
3: Equation of a solar cell
4: Manufacturing technology. Includes a visit to the Sala Blanca facilities (Campus Nord and Campus Besos)

Specific objectives:
To introduce students to the technology of photovoltaic devices. Understand the principles of operation of solar cells.

Full-or-part-time: 20h 30m
Laboratory classes: 3h 30m
Guided activities: 6h
Self study: 11h

GRADING SYSTEM

Assessment will be based on the submission of an abstract of a recently published research paper which will be provided to students. Students must discuss the research work and carry out a critical review based on the knowledge provided in class.

BIBLIOGRAPHY

Basic:

RESOURCES

Other resources:
https://www.youtube.com/watch?v=Nk5WeP81Lq8
https://www.pveducation.org/
Misconceptions and Misnomers in Solar Cells, Andres Cuevas; Di Yan DOI: 10.1109/JPHOTOV.2013.2238289