Machine learning is becoming an indispensable life skill with countless applications in any field where data is available. In this course, we will start by presenting history of neural network and machine learning methods. We will discuss attractor neural networks and their storage capacity, as well as feed forward multi-layer neural networks and back propagation algorithm. We will make a general introduction to machine learning methods. In the second part of the course, four hours long seminars will take place in which the state-of-the-art methods of machine learning and neural networks will be presented and discussed with details: including feedforward convolution neural networks and recurrent networks. We will put an emphasis on hands-on training on real-life problems. We will discuss the major learning paradigms (supervised, unsupervised, generative, and reinforcement learning) as well as the main types of data (structured, semi-structured, an unstructured). Concrete examples will concern pattern recognition in bio-photonics, recognition of quantum phases and phase transitions, etc.

The pace of development in quantum technologies is akin to the rapid advances made in machine learning. It is natural to ask whether quantum resources could boost learning algorithms: this field of enquiry is called quantum-enhanced machine learning. Recent progress indicates that current and near-future quantum technologies have tangible benefits for machine learning. The second half of the course will focus on these methods, demonstrating the difficulty of the problems by classical simulations. In the last 4 hours we will try to address the question of if quantum neural networks and machine learning can be realized with cold atoms and ions.
230584 - ML - Machine Learning on Classical and Quantum Data

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 22h</th>
<th>29.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 2h</td>
<td>2.67%</td>
</tr>
<tr>
<td></td>
<td>Self study: 51h</td>
<td>68.00%</td>
</tr>
</tbody>
</table>

Content

Part 1: Machine learning on classical data

Learning time: 14h 30m
- Theory classes: 7h 30m
- Guided activities: 7h

Description:
1. Introduction to machine learning. What makes a good hypothesis and the problem of generalization. Shallow architectures and feature engineering.
5. Reinforcement learning.

Part 2: Quantum-enhanced machine learning

Learning time: 8h
- Theory classes: 4h
- Guided activities: 4h

Description:
1. Thermal state sampling protocols and probabilistic methods.
2. Discrete optimization on quantum hardware.

Qualification system

- Homework assessments (50%)
- Written exam (35%)
- Oral presentation of a scientific journal paper (15%)
Bibliography

Basic:

