230605 - DTP - Data Transmission Protocols

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN NETWORK ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: JORDI FORNÉ
Others: MIQUEL SORIANO

Prior skills
Probability and stochastic processes.

Degree competences to which the subject contributes

Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.
2. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process
3. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services

Transversal:
4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Exercises
- Extended answer test (Final Exam)

Learning objectives of the subject

Learning objectives of the subject:

The aim of this course is to give students a clear overview of the problems and issues that must be dealt with on designing protocols, including formal description, syntax, semantics and synchronization of communication. Moreover, other aspects that are addressed for many network protocols are included: error detection and correction, compression to
reduce the size of data transmitted and security.

Learning results of the subject:

- Understand the design issues related to network protocols, taking into account all the elements included in its specification.
- Ability to analyse, model and implement new network protocols
- Ability to analyse and apply advanced security techniques, including cryptographic protocols, firewalls, and collection mechanisms, authentication and content protection.
- Ability to evaluate the performance of different error detection and correction mechanisms
- Ability to apply source coding mechanisms in communication protocols, evaluating the achieved compression rate.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
<td></td>
</tr>
</tbody>
</table>
Content

2. Network Security

Learning time: 35h
Theory classes: 10h 30m
Self study: 24h 30m

Description:
- Introduction
- Security services
- Security mechanisms
- Examples of security protocols

3. Source coding

Learning time: 31h
Theory classes: 9h
Self study: 22h

Description:
- Introduction to lossless compression
- Introduction to entropy
- Lossless compression methods
- Compression protocols

4. Channel coding

Learning time: 35h
Theory classes: 10h 30m
Self study: 24h 30m

Description:
- Introduction to error correction and detection
- Linear Block codes
- The standard array and syndrome table decoding
- Perfect codes, Hamming codes
- Weight distributions and performance of linear codes
Planning of activities

<table>
<thead>
<tr>
<th>EXERCISES</th>
<th>Description: Exercises to strengthen the theoretical knowledge.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT ANSWER TEST (CONTROL)</td>
<td>Description: Mid-term control.</td>
</tr>
<tr>
<td>EXTENDED ANSWER TEST (FINAL EXAMINATION)</td>
<td>Description: Final examination.</td>
</tr>
</tbody>
</table>

Qualification system

Final examination: 35%
Partial examinations and controls: 65%

Bibliography

Complementary: