Degree competences to which the subject contributes

Specific:
1. Ability to apply advanced knowledge in photonics, optoelectronics and high-frequency electronic
2. Ability to design and manufacture integrated circuits
3. Ability to develop radio-communication systems: antennas design, equipment and subsystems, channel modeling, link dimensioning and planning.
4. Ability to implement wired/wireless systems, in both fix and mobile communication environments.

Transversal:
5. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
6. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
7. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

- Lectures
- Application sessions
- Laboratory sessions
- Laboratory practical work
- Group work (distance)
- Individual work (distance)
- Exercises
- Oral presentations
- Other activities: circuit design, fabrication and laboratory measurement
- Extended answer test (Final Exam)
Learning objectives of the subject:

The aim of this course is to train students in the methods for the analysis of circuits and systems at RF, microwave, terahertz and optical frequencies, as well as the study of the available technology and the electronic and photonic components that are used at these frequencies. The techniques are then applied to the design of prototypes that are characterized in the laboratory.

Learning results of the subject:

- Knowledge of the basic concepts and techniques related to applications of electromagnetic wave propagation at microwave, terahertz and photonic frequencies in the fields of communications, satellite and remote sensing.
- Knowledge of the fundamental electronic and photonic components (active and passive), materials and manufacturing processes for these applications and frequency bands.
- Understanding of the basic phenomena involved in the generation, detection, and frequency conversion of electromagnetic waves in these frequency bands.
- Specific techniques for the analysis of circuits and systems at RF, microwave, terahertz and optical frequencies, and their application to the design of passive and active circuits (transmission lines, waveguides, filters, couplers, splitters, signal sources, amplifiers, detectors, mixers, modulators).
- Specific techniques for the simulation of circuits and systems at RF, microwave, terahertz and optical frequencies using CAD programs.
- Design and fabrication of circuits and systems (amplifiers, filters, detectors, electromagnetic visualization systems).
- Specific techniques used to measure circuits and systems at these frequencies.
- Experimental characterization of designed prototypes in the laboratory.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
</tr>
<tr>
<td>Hours medium group:</td>
</tr>
<tr>
<td>Hours small group:</td>
</tr>
<tr>
<td>Guided activities:</td>
</tr>
<tr>
<td>Self study:</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **1. Linear analysis of RF and Microwave circuits** | 67h | Theory classes: 8h
Practical classes: 4h
Laboratory classes: 9h
Self study: 46h
Planar transmission lines. Analysis, design and simulation of passive circuits (couplers, hybrids, filters) and active circuits (low noise amplifiers). CAD techniques. Techniques for measurement of Microwave circuits in the laboratory. Laboratory characterization techniques, using specific instrumentation, for RF and Microwave systems. Measurements of circuits designed, simulated and fabricated during the course. |
| **2. Devices and applications of Microwave Photonics** | 58h | Theory classes: 12h
Practical classes: 2h
Laboratory classes: 4h
Self study: 40h
Electronic and photonic components for Microwave applications of Photonics. Transmission and distribution of microwave signals through optical fiber. Microwave Photonics Devices: Filters, Beam Steering Networks, Oscillators. Introduction to Terahertz technology and applications. |
Planning of activities

LABORATORY

Description:
- Laboratory session to understand the operation and calibration techniques of specific instruments to characterize RF, Microwave, Terahertz and Photonic circuits.
- Laboratory session to experimentally characterize circuits and systems that have been designed and simulated in a team project.

EXERCISES

Description:
Exercises to strengthen the theoretical knowledge and CAD techniques for circuit and system simulation.

ORAL PRESENTATION

Description:
Presentation of team projects. Comparison between simulated and measured results. Discussion.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:
Final examination.

Qualification system

Final examination: 50%
Individual assessments: 10%
Group assessments (including laboratory): 40%
Bibliography

Basic:

Complementary: