Course guides
230613 - AFOC - Advanced Fiber Optical Communications

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).

Academic year: 2020 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: JOAN M. GENÉ
Others: JOSÉ A. LÁZARO, JAUME COMELLAS, JOSEP PRAT

PRIOR SKILLS

Basic background on fiber-optic communications and digital communications

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Ability to apply advanced knowledge in photonics, optoelectronics and high-frequency electronic
2. Ability to design and dimension transport, broadcast and distribution networks for multimedia signals
3. Ability to develop, direct, coordinate, and technical and financial management of projects in the field of: telecommunication systems, networks, infrastructures and services, including the supervision and coordination of other's subprojects; common telecommunications infrastructures in buildings or residential areas, including digital home projects; telecommunication infrastructures in transport and environment; with corresponding energy supply facilities and assessment of electromagnetic emissions and electromagnetic compatibility.
4. Ability to implement wired/wireless systems, in both fix and mobile communication environments.
5. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process

Transversal:
6. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
7. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

- Lectures
- Laboratory practical work
- Individual work (distance)
- Exercises
- Short answer test (Control)
- Extended answer test (Final Exam)
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to train students in methods of analysis, design, dimensioning and performance evaluation of optical fibre based communications systems. First, we consider the parameters of interest for systems planning using different photonic technologies as well as advanced optical signal processing models. Then, using this knowledge, we will study the design and evaluation of modern optical fibre based communication systems.

Learning results of the subject:

- Ability to dimension and design WDM high bit-rate fibre optic communication systems.
- Ability to analyse, model and implement advanced optical communication systems.
- Ability to use optical communications simulation tools to assess the results obtained from theoretical studies.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>26,0</td>
<td>20.80</td>
</tr>
<tr>
<td>Hours small group</td>
<td>13,0</td>
<td>10.40</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

1. Introduction

Description:
- Historical evolution of optical fibre communications
- State of the art

Full-or-part-time: 11h
Theory classes: 2h
Self study : 9h

2. WDM fundamentals

Description:
- Optical devices for WDM communications
- Long haul and metro WDM systems
- WDM systems analysis, design and performance evaluation

Full-or-part-time: 32h
Theory classes: 6h
Laboratory classes: 4h
Self study : 22h
3. Advanced Optical amplification

Description:
- Doped Fiber Amplifiers
- Semiconductor Optical Amplifiers
- Raman Amplifiers
- Optical amplification in WDM communication systems

Full-or-part-time: 27h
Theory classes: 6h
Laboratory classes: 3h
Self study: 18h

4. Optical fibre propagation effects

Description:
- Chromatic and Polarization Mode Dispersion
- Non-linear effects in optical fibres
- Compensation (optically and electrically) of propagation effects.

Full-or-part-time: 28h
Theory classes: 6h
Laboratory classes: 3h
Self study: 19h

5. Advanced modulation formats for optical communications

Description:
- Advanced multiplexing (wavelength, time, polarization, code...)
- Single carrier advanced formats (QPSK, m-QAM, OFDM)
- Multi-carrier formats (O-OFDM, Nyquist-WDM)
- Systems analysis and evaluation

Full-or-part-time: 27h
Theory classes: 6h
Laboratory classes: 3h
Self study: 18h

ACTIVITIES

LABORATORY

Description:
Design and evaluation of WDM systems using Matlab.

Full-or-part-time: 10h
Laboratory classes: 10h

EXERCISES

Description:
Exercises to strengthen the theoretical knowledge.
SHORT ANSWER TEST (CONTROL)

Description:
Mid term control.

SHORT ANSWER TEST (TEST)

Description:
Partial evaluation test with theoretical questions and short exercises.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:
Final examination.

GRADING SYSTEM

Final exam: 40%
Partial exams: 20%
Individual assignments: 15%
Group assignments: 25%

BIBLIOGRAPHY

Basic:

Complementary: