230616 - QSN - Quality of Service in Networks

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN NETWORK ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: MÓNICA AGUILAR IGARTUA
Others: MÓNICA AGUILAR IGARTUA

Degree competences to which the subject contributes

Specific:
1. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process

Transversal:
2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
3. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
4. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Laboratory practical work
- Individual work (distance)
- Exercises
- Extended answer test (Final Exam)

Learning objectives of the subject

The course gives a basic knowledge in QoS through metrics, algorithms, routing protocols and their application in the performance evaluation of communication systems. This course covers the principles and algorithms that arise in the QoS provision over different kind of networks, mainly in constrained wireless networks such as the infrastructureless ad hoc networks.

Learning results of the subject:

- Lectures
- Application classes
- Laboratory practical work
- Individual work (distance)
- Exercises
- Extended answer test (Final Exam)
230616 - QSN - Quality of Service in Networks

- Knowledge of the main algorithms for packet forwarding and classification, scheduling, traffic shaping and policing, congestion control.
- Knowledge of the main architectures to provide QoS on the Internet.
- Ability to discuss and analyse the performance of different routing protocols.
- Ability to carry out performance evaluations of QoS-aware routing protocols in communication systems using the NS-2 simulator.
- Ability to discuss and analyse the results of a performance evaluation of routing protocols in communication systems using NS-2 simulations.
- QoS-aware routing protocols for MANETs (Mobile Adhoc Networks) and VANETs (Vehicular Adhoc Networks)
- Smart City applications involving VANETs and multimedia services.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>125h</td>
<td>26h</td>
<td>0h</td>
<td>13h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0h</td>
<td>0h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>

Total learning time: 125h

<table>
<thead>
<tr>
<th></th>
<th>26h</th>
<th>0h</th>
<th>13h</th>
<th>0h</th>
<th>86h</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.80%</td>
<td>0.00%</td>
<td>10.40%</td>
<td>0.00%</td>
<td>68.80%</td>
<td></td>
</tr>
</tbody>
</table>
Content

1. Introduction

Learning time: 9h
- Theory classes: 2h
- Laboratory classes: 1h
- Self study: 6h

Description:
- Introduction. QoS architectures for the Internet: IntServ, RSVP, Diffserv.
- Different classes of services and their QoS requirements (ftp, video-streaming).
- Introduction to the practices to be done with the Network Simulator NS-2.

2. Algorithms to provide QoS

Learning time: 29h
- Theory classes: 6h
- Laboratory classes: 3h
- Self study: 20h

Description:
- Traffic policing and traffic shaping algorithms. Leaky bucket algorithms.
- Algorithms to provide QoS locally: Scheduling algorithms (FIFO, RR, WRR).
- Queuing algorithms (RED, WRED, RIO, CBQ).
- Introduction to simple network scenarios using NS-2.

3. Routing protocols and QoS

Learning time: 29h
- Theory classes: 6h
- Laboratory classes: 3h
- Self study: 20h

Description:
- Classification of routing protocols in communication networks from the QoS perspective.
- Routing protocols for ad hoc networks and QoS offered by each one: Terminology, basics and applications, characteristics of ad hoc communication, ad hoc routing protocols (AODV, OLSR, DSR, GPSR).
- Simulation of network scenarios for different routing protocols.
4. **QoS metrics used in routing protocols. QoS parameters used in performance evaluation.**

Description:
- QoS parameters (delay, jitter delay, percentage of packet losses, throughput)
- QoS metrics (distance, available bandwidth, delay, jitter delay, losses, load).
- Advanced QoS metrics for ad hoc networks (path quality, link lifetime, battery lifetime, nodes' density, nodes' trajectory).
- Measure of QoS parameters using real traces from simulations.
- Performance evaluation of proposals of QoS-aware routing protocols compared to traditional routing protocols based only on the distance to destination.

Learning time: 32h
- Theory classes: 8h
- Laboratory classes: 4h
- Self study: 20h

5. **Advanced QoS-aware routing protocols considering different QoS metrics.**

Description:
- QoS parameters (delay, jitter delay, percentage of packet losses, throughput)
- QoS metrics (distance, available bandwidth, delay, jitter delay, losses, load).
- Advanced QoS metrics for ad hoc networks (path quality, link lifetime, battery lifetime, nodes' density, nodes' trajectory).
- Confidence intervals of simulation results.

Learning time: 26h
- Theory classes: 4h
- Laboratory classes: 2h
- Self study: 20h
Planning of activities

<table>
<thead>
<tr>
<th>LABORATORY</th>
<th>Hours: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXERCISES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Exercises to strengthen the theoretical knowledge.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORAL PRESENTATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Presentation of a work group.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXTENDED ANSWER TEST (FINAL EXAMINATION)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Final examination.</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

- Final examination: 60%
- Individual assessment in the classroom: 10%
- Individual assessment in the laboratory: 30%

Bibliography

Basic:

Complementary:
