Degree competences to which the subject contributes

Specific:
1. Ability to model, design, implement, manage, operate, administrate and maintain networks, services and contents.
2. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process.
3. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services.

Transversal:
4. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
5. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
6. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
Learning objectives of the subject:
The aim of this course is to train students in methods of designing, evaluating and understanding the basic mechanisms for securing a data communications networks. We propose a practical approach where the different concepts introduced in the lectures are deployed in the lab in real networks.

Learning results of the subject:
- Ability to specify, design networks, services, processes and applications of telecommunications in both a fixed, mobile, personal, local or long distance, with different bandwidths in multicast networks, including voice and data.
- Ability to apply both traffic engineering tools as planning tools, dimensioning and network analysis.
- Ability to analyse, model and implement new architectures, network protocols and communication interfaces and new network services and applications.
- Ability to analyse, model and apply advanced techniques both security, including cryptographic protocols, firewalls, and collection mechanisms, authentication and content protection.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 13h</th>
<th>10.40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>26h</td>
<td>20.80%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. Introduction

Description:
- Fundamental principles of secure networks
- Worms, viruses, and trojans
- Botnets
- Attack Methodologies
- Monitoring devices

Learning time: 8h
- Theory classes: 2h
- Self study: 6h

2. Authentication, authorization and accounting (AAA)

Description:
- Purpose of AAA Protocols AAA: Radius and Diameter
- AAA server based configuration

Learning time: 21h
- Theory classes: 4h
- Laboratory classes: 3h
- Self study: 14h

3. Perimeter Security

Description:
- Introduction to firewalls
- Firewall technologies
- Access Control based on firewall policy context
- Detection systems and intrusion prevention (IDPS)
- Fundamentals of IDPS technologies
- HIDPS, NIDPS and Honeypots

Learning time: 26h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 18h
4. LAN protection

Learning time: 14h
*Theory classes: 2h
Laboratory classes: 2h
Self study: 10h*

Description:
- Security Considerations Layer 2
- Wireless, VoIP and SAN security considerations
- Configuring Switch Security SPAN and RSPAN

5. Virtual Private Networks (VPNs)

Learning time: 18h
*Theory classes: 4h
Laboratory classes: 2h
Self study: 12h*

Description:
- Introduction. Requirements and types of VPNs: remote access, point to point and internal
- Components and operations of IPSec VPNs
- SSL VPNs: architecture and fundamentals

6. Manage a secure network

Learning time: 18h
*Theory classes: 4h
Laboratory classes: 2h
Self study: 12h*

Description:
- Life cycle of a secure Self-Defending Network
- Construction of a comprehensive security policy

7. Network Forensics

Learning time: 20h
*Theory classes: 4h
Laboratory classes: 2h
Self study: 14h*

Description:
- Forensics phases. Digital Evidence. Common occurrences
- Timeline. Data search. Recovering deleted files
- Analysis of evidence. Event audit
Planning of activities

LABORATORY

Description:
- Radius/Diameter lab
- Firewall lab
- WiFi Security lab
- VPN lab
- Network management lab
- Forensics lab

EXERCISES

Description:
Exercises to strengthen the theoretical knowledge.

ORAL PRESENTATION

Description:
Presentation of Use Case: Network Security Management.

SHORT ANSWER TEST (CONTROL)

Description:
Mid term control.

SHORT ANSWER TEST (TEST)

Description:
Partial evaluation test with theoretical questions and short exercises.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:
Final examination.

Qualification system

Midterm exam: 30%
Final exam: 40%
Attendance and class performance: 10%
Assignments: 20%
230617 - NS - Network Security

Regulations for carrying out activities

Laboratory exercises are done in groups of 4 people (5 max)
2 laptops per group are required

Bibliography

Basic:

Complementary: