Course guides
230647 - ACWS - Advanced Communications for Wireless Systems

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Compulsory subject).
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).
Academic year: 2021 ECTS Credits: 5.0 Languages: English

LECTURER
Coordinating lecturer: Vazquez Grau, Gregori
Others: Riba Sagarra, Jaume
Vazquez Grau, Gregori

REQUIREMENTS
Students are required to certify that they have previously followed courses on digital communications with similar technical contents than the master adaptation course 'Digital Communications' (http://infoteleco.upc.edu/documents/guia_docent/assignatures/all/ang/230600.pdf) or as for the undergraduate subjects 'Introduction to Communications' (https://www.upc.edu/content/grau/guiadocent/pdf/ing/230018) and 'Advanced Digital Communications' (http://infoteleco.upc.edu/documents/guia_docent/assignatures/all/ang/230051.pdf).

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Transversal:
2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

3. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY
- Lectures
- Application classes
- Individual work (distance)
- Exercises
- Mid-Term Exam
- Final Exam
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to present advanced concepts on digital communication systems. The course is divided in two main sections, that is, the point-to-point communication theory and the extension to multiuser scenarios. From a definition and a measure of information, the course develops the theory associated to the important concept of channel capacity. Impact of frequency-flat fading channels and frequency selective channels are analyzed. Performance degradations are mitigated through the use of transmission and reception diversity techniques. The extension of all the former concepts to a multiuser framework is done, providing a more rich and interesting context for current and future communication networks.

Learning results of the subject:

- To achieve a solid background on fundamental concepts of digital communications and information theory.
- Ability to understand the physical layers of modern advanced communication systems in point-to-point and multiuser networks.
- Ability to analyze, characterize and develop the physical layers of modern advanced communication systems in point-to-point and multiuser networks.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>39,0</td>
<td>31.20</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

1. Introduction: A Definition of Information.

Description:
- Discrete memoryless sources and source entropy.
- Discrete memoryless channels, mutual Information and channel capacity.
- Continuous time-amplitude channels. The Gaussian channel.
- Water-pouring and bit-loading approaches.

Full-or-part-time: 42h
 Theory classes: 12h
 Self study: 30h

2. Additive White Gaussian Channel (AWGN).

Description:
Signalling and optimal detection.
Performance bounds and case studies.

Full-or-part-time: 7h
 Theory classes: 3h
 Self study: 4h
3. Frequency-Flat-Fading Channels: the wireless channel.

Description:
- Statistical Models.
- Performance degradation and diversity schemes.
- Use of the channel-state information.
- Slow-fading: outage probability and outage capacity.
- Fast-fading: ergodic capacity.

Full-or-part-time: 16h
Theory classes: 6h
Self study : 10h

4. Frequency-Selective Channels: the multipath channel.

Description:
- Bello's channel model and channel transfer matrix.
- SVD and optimal communication schemes.
- OFDMA: Orthogonal Frequency Division Multiple Access.
- Hybrid SVD on OFDMA solutions.

Full-or-part-time: 20h
Theory classes: 6h
Self study : 14h

5. Multiple-Access Channel.

Description:
- Ahiswede-Liao multiple-access capacity region.
- Multiple-access schemes and capacity regions: TDMA, FDMA-OFDMA, CDMA.
- Multiuser detection.
- Uplink fading channel.
- Downlink fading channel.
- Multiuser diversity.

Full-or-part-time: 40h
Theory classes: 12h
Self study : 28h

ACTIVITIES

EXERCISES

EXTENDED ANSWER TEST (MID TERM EXAMINATION)

EXTENDED ANSWER TEST (FINAL EXAMINATION)
GRADING SYSTEM

Final examination: 40 %
Mid-Term examination: 60 %
Final Grade: The final grade is the maximum between the Final Exam mark and the weighted former mark.

BIBLIOGRAPHY

Basic:

Complementary: