230647 - ACWS - Advanced Communications for Wireless Systems

Learning objectives of the subject:

The aim of this course is to present advanced concepts on digital communication systems. The course is divided in two main sections, that is, the point-to-point communication theory and the extension to multiuser scenarios. From a definition and a measure of information, the course develops the theory associated to the important concept of channel capacity. Impact of frequency-flat fading channels and frequency selective channels are analyzed. Performance degradations are mitigated through the use of transmission and reception diversity techniques. The extension of all the former concepts to a multiuser framework is done, providing a more rich and interesting context for current and future communication networks.

Learning results of the subject:

- To achieve a solid background on fundamental concepts of digital communications and information theory.
230647 - ACWS - Advanced Communications for Wireless Systems

- Ability to understand the physical layers of modern advanced communication systems in point-to-point and multiuser networks.
- Ability to analyze, characterize and develop the physical layers of modern advanced communication systems in point-to-point and multiuser networks.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39h</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td>31.20%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
230647 - ACWS - Advanced Communications for Wireless Systems

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **1. Introduction: A Definition of Information.** | 42h | **Description:**
 - Discrete memoryless sources and source entropy.
 - Discrete memoryless channels, mutual Information and channel capacity.
 - Continuous time-amplitude channels. The Gaussian channel.
 - Water-pouring and bit-loading approaches. |
| **2. Additive White Gaussian Channel (AWGN).** | 7h | **Description:**
 - Signalling and optimal detection.
 - Performance bounds and case studies. |
| **3. Frequency-Flat-Fading Channels: the wireless channel.** | 16h | **Description:**
 - Statistical Models.
 - Performance degradation and diversity schemes.
 - Use of the channel-state information.
 - Slow-fading: outage probability and outage capacity.
 - Fast-fading: ergodic capacity. |
| **4. Frequency-Selective Channels: the multipath channel.** | 20h | **Description:**
 - Bello’s channel model and channel transfer matrix.
 - SVD and optimal communication schemes.
 - OFDMA: Orthogonal Frequency Division Multiple Access.
 - Hybrid SVD on OFDMA solutions. |
Planning of activities

EXERCISES

EXTENDED ANSWER TEST (MID TERM EXAMINATION)

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Qualification system

Final examination: 60 %
Mid-Term examination: 40 %
Final Grade: The final grade is the maximum between the Final Exam mark and the weighted former mark.

- Ahiswede-Liao multiple-access capacity region.
- Multiple-access schemes and capacity regions: TDMA, FDMA-OFDMA, CDMA.
- Multiuser detection.
- Uplink fading channel.
- Downlink fading channel.
- Multiuser diversity.
Bibliography

Basic:

Complementary:

