Course guides
230647 - ACWS - Advanced Communications for Wireless Systems

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Compulsory subject).
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).
Academic year: 2020
ECTS Credits: 5.0
Languages: English

LECTURER
Coordinating lecturer: Vazquez Grau, Gregori
Others: Riba Sagarra, Jaume

REQUIREMENTS
Students are required to certify that they have previously followed courses on digital communications with similar technical contents than the master adaptation course 'Digital Communications' (http://infoteleco.upc.edu/documents/guia_docent/assignatures/all/ang/230600.pdf) or as for the undergraduate subjects 'Introduction to Communications' (https://www.upc.edu/content/grau/guiadocent/pdf/ing/230018) and 'Advanced Digital Communications' (http://infoteleco.upc.edu/documents/guia_docent/assignatures/all/ang/230051.pdf).

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Transversal:
2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

3. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY
- Lectures
- Application classes
- Individual work (distance)
- Exercises
- Mid-Term Exam
- Final Exam
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to present advanced concepts on digital communication systems. The course is divided in two main sections, that is, the point-to-point communication theory and the extension to multiuser scenarios. From a definition and a measure of information, the course develops the theory associated to the important concept of channel capacity. Impact of frequency-flat fading channels and frequency selective channels are analyzed. Performance degradations are mitigated through the use of transmission and reception diversity techniques. The extension of all the former concepts to a multiuser framework is done, providing a more rich and interesting context for current and future communication networks.

Learning results of the subject:

- To achieve a solid background on fundamental concepts of digital communications and information theory.
- Ability to understand the physical layers of modern advanced communication systems in point-to-point and multiuser networks.
- Ability to analyze, characterize and develop the physical layers of modern advanced communication systems in point-to-point and multiuser networks.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>39,0</td>
<td>31.20</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

1. Introduction: A Definition of Information.

Description:
- Discrete memoryless sources and source entropy.
- Discrete memoryless channels, mutual Information and channel capacity.
- Continuous time-amplitude channels. The Gaussian channel.
- Water-pouring and bit-loading approaches.

Full-or-part-time: 42h

Theory classes: 12h
Self study : 30h

2. Additive White Gaussian Channel (AWGN).

Description:
Signalling and optimal detection.
Performance bounds and case studies.

Full-or-part-time: 7h

Theory classes: 3h
Self study : 4h
3. Frequency-Flat-Fading Channels: the wireless channel.

Description:
- Statistical Models.
- Performance degradation and diversity schemes.
- Use of the channel-state information.
- Slow-fading: outage probability and outage capacity.
- Fast-fading: ergodic capacity.

Full-or-part-time: 16h
Theory classes: 6h
Self study: 10h

4. Frequency-Selective Channels: the multipath channel.

Description:
- Bello’s channel model and channel transfer matrix.
- SVD and optimal communication schemes.
- OFDMA: Orthogonal Frequency Division Multiple Access.
- Hybrid SVD on OFDMA solutions.

Full-or-part-time: 20h
Theory classes: 6h
Self study: 14h

5. Multiple-Access Channel.

Description:
- Ahiswede-Liao multiple-access capacity region.
- Multiple-access schemes and capacity regions: TDMA, FDMA-OFDMA, CDMA.
- Multiuser detection.
- Uplink fading channel.
- Downlink fading channel.
- Multiuser diversity.

Full-or-part-time: 40h
Theory classes: 12h
Self study: 28h

ACTIVITIES

EXERCISES

EXTENDED ANSWER TEST (MID TERM EXAMINATION)

EXTENDED ANSWER TEST (FINAL EXAMINATION)
GRADING SYSTEM

Final examination: 40 %
Mid-Term examination: 60 %
Final Grade: The final grade is the maximum between the Final Exam mark and the weighted former mark.

BIBLIOGRAPHY

Basic:

Complementary: