230665 - AMS - Analog and Mixed-Signal System-On-Chip Design

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019).
(Master's degree Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: JORDI COSP VILELLA
Others: JORDI MADRENAS BOADAS

Prior skills
Knowledge on:
* Electronic devices (diodes, BJT and MOSFET)
* Analysis and design of basic MOSFET analog circuits (W/L and ID sizing) as single-transistor and differential amplifier stages, current mirrors, cascoded circuits.
* Linear and nonlinear OpAmp based circuits
* Stability analysis of second order circuits.

Degree competences to which the subject contributes

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Laboratory classes
- Laboratory practical work
- Oral presentations
- Other activities
- Short answer tests (Control)

Learning objectives of the subject

Learning objectives of the subject:

The course objective is two-fold. First, to complement the student VLSI background acquired in the previous core courses on electronics, stressing on important advanced concepts and providing designer insight in the area of VLSI analog and mixed-signal design. Second, to introduce the critical issues to take into account in the full design of a mixed-signal, submicron/nanometer-scale integrated circuit.
Learning results of the subject

- Is able to prepare, present and defend individually an original professional exercise in the field of Electronics Engineering as a synthesis and a demonstration of skills acquired during its studies.
- Uses knowledge and strategic skills to create and manage projects with innovative vision, applies systemic solutions to complex problems.
- Plans and uses the information needed for a project or academic work from a critical reflection on the information resources used.
- Applies acquired skills to the execution of a task with independence. Identifies the need for continuous learning and develops its own strategy for doing so.
- Identifies major components and establishes commitments and priorities.
- Designs experiments and measurements to verify hypotheses or validate the operation of equipment, processes, systems or services in the field of Electronic Engineering.
- Selects appropriate equipment or software tools and performs advanced analysis with the data.
- Knows the concept of life-cycle of a product and applies it to the development of ICT products and services, using appropriate standards and legislation.
- Can perform an oral presentation and answer questions from the audience.
- Communicates clearly and efficiently in oral and written presentations on complex topics, being able to adapt to the situation, the type of audience and communication goals.
- Ability to synthesize and solve problems related to the electronic engineering discipline, to apply learning techniques in complex and multiple contexts, to apply previous knowledge to new situations and contexts, as well as the ability to coordinate and work in a team.
- Ability to analyze, design and evaluate microelectronic integrated circuits.
- Ability to identify and model electronic complex systems. Ability to perform qualitative analysis and approximations, establishing the uncertainty of the results.
- Ability to pose hypotheses on microelectronic circuits behavior and experimental methods to validate them.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group: 26h</th>
<th>Hours medium group: 0h</th>
<th>Hours small group: 13h</th>
<th>Guided activities: 0h</th>
<th>Self study: 86h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.80%</td>
<td>0.00%</td>
<td>10.40%</td>
<td>0.00%</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>1. Devices</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>- Advanced transistor models (subthreshold, continuous), second-order effects.</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>- Noise models and distortion.</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>- Simulator limits.</td>
<td></td>
</tr>
<tr>
<td>- Integrated capacitors and resistors.</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- Advanced transistor models (subthreshold, continuous), second-order effects.
- Noise models and distortion.
- Simulator limits.
- Integrated capacitors and resistors.

<table>
<thead>
<tr>
<th>2. Key concepts in analog design</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>- Differential signaling, (folded, regulated) cascode and follower associated concepts.</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>- The Miller effect. Pole-splitting.</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>- High-resistance node analysis, gain-bandwidth product, phase margin.</td>
<td></td>
</tr>
<tr>
<td>- Basic stages, advanced current mirrors and references.</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- Differential signaling, (folded, regulated) cascode and follower associated concepts.
- The Miller effect. Pole-splitting.
- High-resistance node analysis, gain-bandwidth product, phase margin.
- Basic stages, advanced current mirrors and references.

<table>
<thead>
<tr>
<th>3. Systematic design of transconductors and opamps</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>- General model.</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>- Simple OTA. Pole-zero doublet. Linearization techniques.</td>
<td>Self study: 8h</td>
</tr>
<tr>
<td>- Fully differential amplifiers (FDA). Common-mode feedback issues.</td>
<td></td>
</tr>
<tr>
<td>- Output stages. Rail-to-rail input and output.</td>
<td></td>
</tr>
</tbody>
</table>
4. Mixed-signal circuits

Learning time: 17h
Theory classes: 5h
Laboratory classes: 4h
Self study: 8h

Description:
- Current and voltage comparators. Hysteresis.
- Charge pumps.
- DLLs.
- Time-to-digital converters.
- Digitally-assisted analog circuits.

5. Chip-level design

Learning time: 16h
Theory classes: 6h
Laboratory classes: 2h
Self study: 8h

Description:
- High-level simulation. Analog and Mixed-Signal (AMS) modeling.
- Digital synthesis.
- Digital back-end.
- Analog and mixed-signal layout techniques. Design rules.
- Power-supply and clock considerations.
- Pad characteristics and models. Pad and power rings. Package.

6. Design project

Learning time: 50h
Self study: 50h

Description:
Development of a design project to apply skills developed during the course.

Qualification system

- Research exercise presentation: 25%
- Practical lab exercises: 20%
- Final course exercise: 30%
- Midterm tests: 25%
Bibliography

Basic:

Complementary:

