230667 - SCPD - System on Chip Physical Design

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff

Coordinator: Moll Echeto, Francesc De Borja
Rubio Sola, Jose Antonio

Others: Moll Echeto, Francesc De Borja
Rubio Sola, Jose Antonio

Opening hours

Timetable: 6 hours per week

Prior skills

Basic knowledge of CMOS technology and design.
Basic knowledge of digital design, combinational and sequential.

Requirements

Graduate studies in Electronic Engineering or equivalent

Degree competences to which the subject contributes

Specific:
CEE18. Ability to design CMOS digital and analog integrated circuits of medium complexity.
CEE19. Ability to apply low-power techniques to integrated circuits (ICs).

Transversal:
1. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
3. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
Learning objectives of the subject:

The aim of this course is to train students in methods of design of CMOS integrated circuits from a high level description to a layout in an efficient way using computers so that the resulting layout satisfies topological, geometric, timing and power-consumption constraints of the design.

Learning results of the subject:

- Ability to understand and apply timing and power constraints to a complex integrated circuit.
- Ability to perform the physical implementation of a complex integrated circuit.
- Ability to apply low power design techniques to integrated circuit design.
- Ability to develop techniques for the design, analysis and evaluation of electronic systems in applications such as automation, aerospace, energy distribution and generation, consumer electronics, biomedicine, etc.
- Ability to analyze, design and evaluate microelectronic integrated circuits.
- Ability to implement advanced design techniques of microelectronic integrated circuits.
- Ability to use state of the art computer aided design (CAD) tools for the design of integrated circuits.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 13h</th>
<th>10.40%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 26h</td>
<td>20.80%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>1. Nanometer chip design overview</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>- Challenges in nanometer chip</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>design</td>
<td>Self study : 16h</td>
</tr>
<tr>
<td>- Digital design flows</td>
<td></td>
</tr>
<tr>
<td>- Design and verification</td>
<td></td>
</tr>
<tr>
<td>- Physical implementation</td>
<td></td>
</tr>
<tr>
<td>- Low power design techniques</td>
<td></td>
</tr>
<tr>
<td>- Test techniques</td>
<td></td>
</tr>
<tr>
<td>- Signoff</td>
<td></td>
</tr>
<tr>
<td>- Lab1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. RTL synthesis for low power</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>- Power problem</td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>- Low power techniques</td>
<td>Self study : 18h</td>
</tr>
<tr>
<td>- Power-aware synthesis (Lab2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Design planning/ floorplanning</th>
<th>Learning time: 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>- Low power design flow</td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>- Floorplan</td>
<td>Self study : 18h</td>
</tr>
<tr>
<td>- Power distribution plan</td>
<td></td>
</tr>
<tr>
<td>- Lab3</td>
<td></td>
</tr>
</tbody>
</table>
4. Physical design

Description:
- Placement and optimization
- Clock tree synthesis
- Routing
- Lab4

Learning time: 27h
- Theory classes: 3h
- Laboratory classes: 6h
- Self study: 18h

5. Sign-off

Description:
- IR drop analysis
- Design finishing and layout verification
- Tapeout
- Lab: project

Learning time: 6h
- Theory classes: 2h
- Self study: 4h

6. Design project

Description:
Implement an IP using low power flow.

Learning time: 18h
- Laboratory classes: 6h
- Self study: 12h

Qualification system

Continuous evaluation (CE):
- Partial exams: 25%
- Individual assessments: 25%
- Laboratory experiences: 50%

Final score: maximum (CE, Final exam)

Regulations for carrying out activities

Final exam: individual
- Individual works: Individual
- Research presentation: groups of two students
- Laboratory: groups of two students
Bibliography

Complementary:

Others resources:

Slides of the course